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ABSTRACT
This paper deals with noise parameter estimation. We as-
sume observations corrupted by noise modelled as a sum of
two random processes: one Poisson and the other a (nonzero
mean) Gaussian. Such problems arise in various applica-
tions, e.g. in astronomy and confocal microscopy imaging.
To estimate noise parameters, we propose an iterative algo-
rithm based on an Expectation-Maximization approach. This
allows us to jointly estimate the scale parameter of the Pois-
son component and the mean and variance of the Gaussian
one. Moreover, an adequate initialization based on cumu-
lants is provided. Numerical difficulties arising from the pro-
cedure are also addressed. To validate the proposed method
in terms of accuracy and robustness, tests are performed on
synthetic data. The good performance of the method is also
demonstrated in a denoising experiment on real data.

1. INTRODUCTION

In many real world problems, data are corrupted by random
noise. Although the physical properties of acquisition sys-
tems often lead us to consider a specific probabilistic model
for the noise, its parameters are usually unknown. For many
simple probability distributions (e.g. Gaussian, Poisson,...),
standard estimators are available, such as those provided by
the Maximum Likelihood (ML), moment estimates or or-
der statistics. When the noise is Poisson distributed, the
Anscombe transform [1] can be also applied so that the noise
can be considered as approximately following a Gaussian
distribution. However, at low count, the Anscombe trans-
form introduces a significant bias. There exist stabilization
methods for more complex forms of noise, but noise param-
eters must still be known.

When the noise takes a more complicated form such as a
combination of Gaussian and Poisson distributions, and the
signal-to-noise ratio is low, specific algorithms need to be de-
signed. Such scenarios occur for example in, astronomy [2],
medical imaging [10], microscopy imaging [12] but also in
MACROscopy imaging.

In the literature, the noise estimation problem has been
investigated either from a single or from several signal real-
izations. The estimation from a single realization is an under-
determined problem. Therefore some prior knowledge con-
cerning the signal of interest must be included into the model.
Parametric estimation problems for a Poisson plus zero-mean
Gaussian noise from a single image were addressed, for ex-
ample in [6, 8]. Since in [6] the authors focus on CCD
camera applications, the expected signal-to-noise ratio is rel-
atively high and the Anscombe transform can be success-
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fully applied. Similarly, the method derived in [8] was de-
veloped for CCD camera images where the assumption of a
zero-mean Gaussian component is well founded. Estimators
based on several realizations [7] are more reliable and they
do not necessarily require prior information about the target
signal. Moreover, in many practical applications such as mi-
croscopy, several signal acquisitions are feasible (possibly
through a calibration process).

The literature on parameter estimation for a Poisson plus
Gaussian noise with nonzero mean, especially when a low
level signal is expected, is very limited. Among the few
contributions dealing with this problem, the author in [15]
proposes a cumulant-based approach, whereas in [3, 4], the
authors make use of the Anscombe transform and a regres-
sion based approach. These algorithms can compute noise
parameters for denoising procedures, in which they are nor-
mally assumed to be known [2, 9].

In this work, we propose a multivariate parameter es-
timation method when the noise is assumed to be a com-
bination of Poisson and Gaussian components. More pre-
cisely, we aim at performing an accurate estimation of the
scale parameter α of the Poisson component , the mean c
and the variance σ2 of the Gaussian one. We first point out
the limitations of an ML approach. This leads us to develop
an Expectation-Maximization (EM) algorithm, the numeri-
cal implementation of which is discussed. Although the EM
algorithm is a popular solution in statistical signal process-
ing (see [13] for Gaussian mixtures or [5] for Poisson noise),
its use in the present context appears to be new. One of the
crucial step in the proposed approach is the initialization of
the EM iterative procedure. This initialization is realized by
an accurate cumulant-based method.

The remaining of the paper is organised as follows: In
Section 2 we present the considered model and introduce the
notation used in this work. In Section 3, we briefly discuss
ML estimation difficulties. Our algorithm is then described
in Section 4. Finally, simulations are made in Section 5
showing the good performance and the robustness of the pro-
posed approach.

2. PROBLEM

We consider data (us)1≤s≤S where s corresponds to a location
index (e.g. locating pixel (x,y) in 2D or (x,y,z) in 3D), which
are corrupted by a Poisson-Gaussian noise, and for which we
observe T realizations. Each realization will be indexed by
t ∈ {1, . . . ,T}, which can be a time index.

Such a framework leads us to the following model: (∀s∈
{1, . . . ,S})(∀t ∈ {1, . . . ,T})

Rs,t = αQs,t +Ns,t (1)

where Qs,t ∼P(us), Ns,t ∼ N (c,σ2), α ∈ R is a scaling
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parameter, (us)1≤s≤S is the “clean” signal, and c ∈ R (resp.
σ > 0) is the mean (resp. standard deviation) of the Gaussian
noise.

The problem is then to estimate u = (us)1≤s≤S,
α , c and σ from the available observation field r =
(rs,t)1≤s≤S,1≤t≤T , which is a realization of a random field
R = (Rs,t)1≤s≤S,1≤t≤T . We have thus S+3 parameters to es-
timate.

In the following, it is assumed that u is deterministic
and that Q=(Qs,t)1≤s≤S,1≤t≤T and N =(Ns,t)1≤s≤S,1≤t≤T are
mutually independent random fields. In addition, the compo-
nents of N (resp. Q) are assumed to be independent.

3. MAXIMUM LIKELIHOOD ESTIMATOR

The ML estimate of the parameters is defined as

(û, α̂, ĉ, σ̂) = argmax
(u,α,c,σ)

fR(r | u,α,c,σ). (2)

where fR(· | u,α,c,σ) is the probability density func-
tion (pdf) of R. The ML estimator is known to usually have
better statistical performance than moment estimates [14].

Let pR,Q(·, · | u,α,c,σ) denote the mixed continuous-
discrete probability distribution of (R,Q). By using Bayes
rule, we get

pR,Q(r,q | u,α,c,σ) = fR|Q=q(r | u,α,c,σ)P(Q = q | u)
= fN(r−αq | c,σ)P(Q = q | u) (3)

where fR|Q=q(· | u,α,c,σ) is the conditional pdf of R know-
ing that Q = q and fN(· | c,σ) is the pdf of N.

The desired likelihood (using the independence assump-
tion for the components of N (resp. Q)) thus takes the fol-
lowing form:

fR(r | u,α,c,σ) = ∑
q∈NST

pR,Q(r,q | u,α,c,σ)

=
1

(2π)ST/2σST

S

∏
s=1

exp(−Tus)

T

∏
t=1

+∞

∑
qs,t=1

exp
(
−
(rs,t −αqs,t − c)2

2σ2

)
uqs,t

s

qs,t !
.

The likelihood takes a rather intricate form, which makes the
computation of the ML estimator quite difficult.

4. PROPOSED ALGORITHM

4.1 Expectation-Maximization approach

A possible way of circumventing the aforementioned diffi-
culty consists of resorting to an EM algorithm. In this case,
R is viewed as an incomplete random vector that must be
completed by another vector. We propose here to consider
that the completed vector is (R,Q). For conciseness, let us
define θ = (u,α,c,σ). The EM algorithm is given by the
following iteration:

(∀n ∈ N) θ
(n+1) = argmax

θ

J(θ | θ (n)), (4)

where J(θ | θ (n)) = EQ|R=r,θ (n) [ln pR,Q(R,Q | θ)]. According
to (3), we have

− ln pR,Q(R,Q | θ) =
1

2σ2

S

∑
s=1

T

∑
t=1

(Rs,t −αQs,t − c)2 (5)

+
ST
2

ln(2πσ
2)+T

S

∑
s=1

us−
S

∑
s=1

lnus

T

∑
t=1

Qs,t +
S

∑
s=1

T

∑
t=1

ln(Qs,t !).

By dropping the terms that are independent of θ , we see that
the EM algorithm reduces to

(∀n ∈ N) θ
(n+1) = argmin

θ

J̃(θ | θ (n)), (6)

where

J̃(θ | θ (n)) =
1

2σ2

S

∑
s=1

T

∑
t=1

EQ|R=r,θ (n) [(rs,t −αQs,t − c)2]

+
ST
2

ln(σ2)+T
S

∑
s=1

us−
S

∑
s=1

lnus

T

∑
t=1

EQ|R=r,θ (n) [Qs,t ]. (7)

This leads us to the following iterative solution: for every n,

(∀s ∈ {1, . . . ,S}) u(n+1)
s =

1
T

T

∑
t=1

EQ|R=r,θ (n) [Qs,t ] (8)[ ST ∑s,t EQ|R=r,θ (n) [Qs,t ]

∑s,t EQ|R=r,θ (n) [Qs,t ] ∑s,t EQ|R=r,θ (n) [Q2
s,t ]

][
c(n+1)

α(n+1)

]
=

[
∑s,t rs,t

∑s,t rs,tEQ|R=r,θ (n) [Qs,t ]

]
(9)

(σ2)(n+1) = (10)

1
ST

S

∑
s=1

T

∑
t=1

rs,t

(
rs,t −α

(n+1)EQ|R=r,θ (n) [Qs,t ]− c(n+1)
)
.

So, provided that we are able to compute EQ|R=r,θ (n) [Qs,t ] and
EQ|R=r,θ (n) [Q2

s,t ], the implementation of the EM algorithm is
quite simple.

Let us now turn our attention to the computation of
the required conditional mean values. For every (t,s) ∈
{1, . . . ,T}×{1, . . . ,S}, we have

EQ|R=r,θ (n) [Qs,t ] =
+∞

∑
qs,t=1

qs,tP(Qs,t = qs,t | R = r,θ (n)). (11)

In addition,

P(Qs,t = qs,t | R = r,θ (n)) =
pRs,t ,Qs,t (rs,t ,qs,t | θ (n))

fRs,t (rs,t | θ (n))
. (12)

Using again (3), this implies

EQ|R=r,θ (n) [Qs,t ] =
ζ
(n)
s,t

η
(n)
s,t

, (13)
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where

ζ
(n)
s,t =

+∞

∑
qs,t=1

exp

(
−
(rs,t −α(n)qs,t − c(n))2

2(σ2)(n)

)
(u(n)s )qs,t

(qs,t −1)!

(14)

η
(n)
s,t =

+∞

∑
qs,t=0

exp

(
−
(rs,t −α(n)qs,t − c(n))2

2(σ2)(n)

)
(u(n)s )qs,t

qs,t !
.

(15)

Similarly, we have

EQ|R=r,θ (n) [Q2
s,t ] =

ξ
(n)
s,t

η
(n)
s,t

, (16)

where

ξ
(n)
s,t =

+∞

∑
qs,t=1

qs,t exp

(
−
(rs,t −α(n)qs,t − c(n))2

2(σ2)(n)

)
(u(n)s )qs,t

(qs,t −1)!
.

(17)
In these formulas, qs,t acts as a summation index. As we

can only perform finite summations, one can stop the sum-
ming at convergence. Alternatively, for improved efficiency
we have derived lower and upper bounds for qs,t present in
(14), (15) and (17). The bounds are functions of rs,t , α(n),
c(n), (σ2)(n) and u(n)s . The lower bound is denoted by q(n)

s,t

and upper bound by q(n)s,t . Due to the lack of space, this point
will be discussed in an expanded version of this paper.

4.2 Initialization
In Section 4.1, an EM algorithm for Poisson-Gaussian noise
parameter identification was derived. As with many imple-
mentations of the EM algorithm, an important consideration
is how to initialize θ . The problem is now to find appropri-
ate initial values of α(1), c(1), (σ2)(1) and u(1). We propose
a moment based approach to set these values. Due to the
mutual independence assumption,

κn[Rs,t ] = α
n
κn[Qs,t ]+κn[Ns,t ] (18)

where κn[A] designates the cumulant of order n of some ran-
dom variable A. Using classical results about cumulants, we
obtain:

• mean value: κ1[Rs,t ] = E[Rs,t ] = αus + c (19)

• variance: κ2[Rs,t ] = Var[Rs,t ] = α
2us +σ

2 (20)
• higher-order cumulants: n≥ 3, κn[Rs,t ] = α

nus. (21)

Let Ê[rs,t ] =
1
T ∑

T
t ′=1 rs,t ′ and let similar sample estimates

V̂ar[rs,t ] and κ̂3[rs,t ] be used for the other cumulants. Dif-
ferent procedures may be derived from (19), (20), and (21)
in order to estimate θ , but they are not equally reliable. For
example according to our observations, κ̂4[rs,t ]

κ̂3[rs,t ]
does not pro-

vide a very good estimate of α . Instead, we propose to use:

α
(1) =

S∑
S
s=1 Ê[rs,t ]V̂ar[rs,t ]−∑

S
s=1 Ê[rs,t ]∑

S
s=1 V̂ar[rs,t ]

S∑
S
s=1(Ê[rs,t ])2−

(
∑

S
s=1 Ê[rs,t ]

)2
,

(22)

which is quite accurate, as only first and second order statis-
tics are used. However, (σ2)(1) cannot be computed in a
similar manner and third order cumulants need to be con-
sidered. One of the possibilities is to compute (σ2)(1) as
median

{
V̂ar[rs,t ]− (α(1))−1κ̂3[rs,t ]

}
, but it can be shown

that the cumulant estimate becomes sensitive when T is small
or when us takes large values. To account for this latter prob-
lem, we propose the following weighted least squares esti-
mate of σ2:

(σ2)(1) =
∑s∈I V̂ar[rs,t ]

−6
(
V̂ar[rs,t ]− (α(1))−1κ̂3[rs,t ]

)
∑s∈I V̂ar[rs,t ]−6

(23)
where I =

{
s ∈ {1, . . . ,S} | V̂ar[rs,t ]− (α(1))−1κ̂3[rs,t ] ≥ 0

}
.

Finally, the initialization is completed by:

c(1) =
1
S

S

∑
s=1

(
Ê[rs,t ]− (α(1))−1V̂ar[rs,t ]

)
+

(σ2)(1)

α(1) , (24)

and

(∀s ∈ {1, . . . ,S}) u(1)s =
1

α(1) (Ê[rs,t ]− c(1)). (25)

4.3 Overview of the proposed method
The tools introduced in Sections 4.1 and 4.2 constitute the
main two ingredients of our estimation method, the pseudo-
code of which is summarized in Algorithm 1.

The iterative process stops when the maximum number
of iterations N is reached, or if max

i=α,σ2,c

∣∣∣i(n+1)− i(n)
∣∣∣ ≤ δ ,

where δ > 0 is some tolerance.

5. SIMULATION EXAMPLES

The experimental results presented here aim at providing in-
formation about the performance of the proposed algorithm
under different working conditions. In particular, in Sec-
tion 5.1 the influence of the values of parameters c, α , σ2

and T is studied. The proposed initialization is shown to be
accurate for T > 200 and values of c, α and σ2 neither too
low nor too high. EM algorithm is investigated for smaller
data set, when its benefits in terms of accuracy are more sig-
nificant. Finally, an application of the proposed algorithm to
real data is demonstrated (Section 5.2). The noise parameters
are identified based on sequences of images corrupted with
Poisson-Gaussian noise.

5.1 Validation of the proposed approach
We evaluate the proposed algorithms using S randomly gen-
erated us values uniformly distributed over [0,100[. This
range was chosen in order to show the performance of our
algorithm in the conditions when the Anscombe transform
is less reliable. Signal Rs,t is generated according to (1) for
different set of parameter values for θ and T . Poisson and
Gaussian noises are simulated using random number genera-
tors as proposed in Park et al. [11].

Identification accuracy is evaluated in terms of relative
absolute error, defined as:

err =

∣∣∣σ2−σ̂2

σ2

∣∣∣+ ∣∣∣α−α̂

α

∣∣∣+ ∣∣ c−ĉ
c

∣∣
3

(26)
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Algorithm 1 Proposed algorithm.
Initialization:
Compute α(1) using (22)
Find I
Compute (σ2)(1) using (23)
Compute c(1) using (24)
Compute u(1) using (25)
Set θ (1) =

(
u(1),α(1),c(1),(σ2)(1)

)
EM Algorithm:
For n = 1 . . .N

Set ζ
(n)
s,t = 0,ξ (n)

s,t = 0,κ(n)
s,t = 1

η
(n)
s,t = exp

(
− (rs,t−c(n))2

2(σ2)(n)

)
u(n)s,t

Compute q(n)
s,t

and q(n)s,t

For qs,t = 1 . . .q(n)
s,t
−1 (see (14), (15), (17) )⌊

κ
(n)
s,t ← κ

(n)
s,t

u(n)s,t
qs,t

For qs,t = q(n)
s,t

. . .q(n)s,t

κ
(n)
s,t ← κ

(n)
s,t

u(n)s,t
qs,t

χ
(n)
s,t = κ

(n)
s,t exp

(
− (rs,t−α(n)qs,t−c(n))2

2(σ2)(n)

)
ζ
(n)
s,t ← ζ

(n)
s,t +χ

(n)
s,t qs,t

ξ
(n)
s,t ← ξ

(n)
s,t +χ

(n)
s,t q2

s,t

η
(n)
s,t ← η

(n)
s,t +χ

(n)
s,t

Update EQ|R=r,θ (n) [Qs,t ] using (13)
Update EQ|R=r,θ (n) [Q2

s,t ] using (16)

Update u(n+1)
s using (8)

Update α(n+1) and c(n+1) using (9)
Update (σ2)(n+1) using (10)
θ (n+1) =

(
u(n+1),α(n+1),c(n+1),(σ2)(n+1)

)

where the estimates are denoted with a hat (e.g. σ̂ ).
The bias and standard deviation of estimated parameters

computed from 100 different noise realizations are presented
in Tables 1, 2, 3 and 4. Moreover the mean error (err) over
all 100 realizations is given. The following points are high-
lighted through these results:
• The reliability of cumulant-based approach increases

with T (see Table 1);
• the mean of estimated parameters σ̂2, ĉ, and α̂ does not

strongly depend on S, but the standard deviation of the
estimates does (see Table 1);

• the estimates provided by the cumulant-based approach
for T ≥ 500 are very accurate (see Table 1);

• parameter α̂ is estimated very accurately with reduced
dependence on parameters S and T ;

• the initialization estimate is subject to higher errors for
very high values of σ2 (see Table 2);

• this estimate is subject to higher errors for low values of
c (see Table 3);

• its accuracy also decreases for very low or very high val-
ues of α (see Table 4).
For T ≤ 200, the results obtained by the cumulant-based

Param. Proposed initialization

S T σ̂2 ĉ α̂ errbias std bias std bias std

10
24

50 -14.83 20.29 -1.74 5.07 -0.21 0.14 0.22
100 -8.58 13.86 -0.54 4.04 -0.09 0.11 0.16
200 -11.69 10.13 1.18 2.7 -0.04 0.04 0.14
500 -1.93 6.24 -0.26 1.61 -0.02 0.04 0.06

1000 -1.16 4.55 -0.24 1.1 -0.01 0.03 0.04

40
96

50 -20.86 13.05 -1.62 2.61 -0.19 0.06 0.16
100 -10.77 6.91 -0.88 1.76 -0.10 0.05 0.09
500 -2.19 2.80 -0.31 0.80 -0.02 0.02 0.03

1000 -0.99 2.13 -0.15 0.49 -0.01 0.01 0.02

Table 1: Identified noise parameter versus S and T (c = 10,
α = 10 and σ2 = 100).

Param. Proposed Initialization

σ2 σ̂2 ĉ α̂ errbias std bias std bias std
0.25 -0.14 0.03 -0.11 5.15 -0.19 0.13 0.18
25 -3.59 3.89 - 0.18 4.19 -0.19 1.14 0.19

400 -11.45 84.32 -0.84 10.53 -0.22 0.15 0.34

Table 2: Identified noise parameter versus σ2(c = 10, α =
10, S = 1024 and T = 50).

approach need to be further improved by EM. Table 5 pro-
vides some numerical results. Here the bias and standard de-
viation of estimated parameters computed from 20 different
noise realizations are presented. One can observe that EM
algorithm offers significant improvements in terms of accu-
racy. Note that, all the presented tests were performed under
difficult conditions for cumulant-based method. The follow-
ing points can be stated:
• Similarly to cumulant-based method, the reliability of

EM increases with T (see rows 1, 2, 3 and compare with
cumulant-based method results shown in Table 1);

• our EM algorithm performs well even if T is small;
• in contrast with the cumulant-based method, EM does

not appear to be sensitive to small values of α and c (see
rows 4, 5);

• both methods become less reliable in the presence of high
variance of the Gaussian noise (see row 6). However EM
still improves results w.r.t. the cumulant-based method
(see Table 2). Note that in this case, the initial signal-to-
noise ratio is very low.

One can also observe that the EM estimates for T = 200 are
quite precise as the estimation error is only 5%.

5.2 Unsupervised image denoising
One possible application of our algorithm is the calibra-
tion of optical measurement systems, which we simulate
in the following experiment. We created a time lapse se-
quences consisting of 40 images with resolution 100× 100,
each corrupted with Poisson-Gaussian noise characterized by
σ2 = 416, c = 10 and α = 50. This corresponds to an ini-
tial SNR value of 0.17 dB. Again, the challenge here stems
from the fact that the value of T is low (40). One can observe
some remaining noise in the result provided by our cumulant-
based method (Fig. 1(c)), which is no longer visible in the
EM result (Fig. 1(d)). This is also verified by inspecting
SNR values, which are equal to 28.3 dB for the cumulant-
based method and 35.6 dB for EM. This example illustrates
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No.
Param. Proposed EM algorithm Error

S T σ2 c α
σ̂2 ĉ α̂ errcum errEMbias std bias std bias std

1 1024 50 100 10 10 -1.86 14.02 -0.35 1.79 -0.21 0.05 0.22 0.11
2 1024 100 100 10 10 0.54 10.92 0.27 1.38 -0.08 0.02 0.16 0.08
3 1024 200 100 10 10 -0.91 7.89 0.09 0.88 -0.04 0.03 0.14 0.05
4 1024 50 100 5 10 1.30 13.16 0.08 1.61 -0.20 0.05 0.33 0.15
5 1024 50 25 10 1 -0.28 0.50 0.00 0.48 -0.02 0.01 0.64 0.03
6 1024 50 400 10 10 7.51 45.24 0.71 5.13 -0.22 0.07 0.34 0.21

Table 5: Expectation-Maximization algorithm performance under difficult conditions for cumulant-based method.

(a) (b) (c) (d)

Figure 1: (a,b,c,d) illustrate original image, its noisy version (scaled with parameter α), cumulant-based method and EM
results, respectively.

Param. Proposed Initialization

c σ̂2 ĉ α̂ errbias std bias std bias std
5 -11.70 19.43 -1.20 5.07 -0.20 0.13 0.33

15 -10.16 26.15 -0.72 5.23 -0.18 0.13 0.17
100 -11.47 24.10 0.21 5.19 -0.17 0.13 0.09

Table 3: Identified noise parameter versus c (σ2 = 100, α =
10, S = 1024 and T = 50).

Param. Proposed Initialization

α
σ̂2 ĉ α̂ errbias std bias std bias std

1 12.99 6.17 13.73 6.29 -0.02 0.02 0.64
5 -2.93 5.69 -0.25 2.83 -0.09 0.07 0.15

50 1.07 56.4 -3.55 25.7 -1.10 0.67 0.81

Table 4: Identified noise parameter versus α (σ2 = 25, c =
10, S = 1024 and T = 50).

the fact that not only noise parameters α , σ2 and c are well
reconstructed but so are the image intensity values us.

6. CONCLUSION

We have proposed a new EM-based approach dealing with
Poisson plus Gaussian noise parameters estimation prob-
lems. We have shown that the proposed method leads to ac-
curate results. We have also proposed an improved cumulant-
based estimation method, which we used to initialize the EM
algorithm. The improvement resulting from the EM itera-
tions is especially significant when the number of realiza-
tions is small. As a side result, it allows us to obtain a good
estimation of the original data when the noise parameters are
unknown.
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