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SPECTRAL MEASURE AND DEVIATION FROM ELLIPTICITY

Steeve Zozor1 and Christophe Vignat2

1 GIPSA-Lab, Département Image et Signal 2 LTHI, Ecole Polytechnique Fédérale de Lausanne,
961 Rue de la Houille Blanche INR 117, Station 14, CH-1015, Switzerland
38402 St Martin d’Hères, France & L.S.S., Supélec, Orsay, France
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ABSTRACT
We show that the location and velocity of the harmonic os-
cillator with Lévy-stable noise are mutually Lévy-stable dis-
tributed. We give explicitly the associated spectral measure,
exhibiting both the non independence and the non ellipticity
of the location-velocity couple. We then propose measures
of deviation from ellipticity.

1. INTRODUCTION

In a recent paper [1], Sokolov et al. study the behavior of
the harmonic oscillator with Lévy-stable noise. They com-
pute the characteristic function in the location-velocity phase
space, what allows them to show numerically that, except in
the Gaussian case, the location and the velocity of the oscil-
lator are not independent. They also show numerically that
the joint distribution is not elliptically distributed either. Fi-
nally they provide a measure of dependence between these
components. The aim of our study is twofold: (i) we provide
a more direct proof that the joint distribution of these com-
ponents is itself Lévy-stable (this result by itself is not new:
see for example [2]) and give explicitly the spectral measure
associated with this distribution; (ii) this explicit expression
of the spectral measure allows to prove that, as claimed in
[1], the components are not independent and also that their
joint distribution is not elliptical. Finally, we propose possi-
ble measures of deviation from ellipticity and provide some
numerical illustrations.

2. BASICS ABOUT LÉVY-STABLE RANDOM
VECTORS

2.1 Definition and characteristic function
By definition, a random vector X of Rd is Lévy-stable (or
α-stable) distributed if, for any positive real numbers a and
b, there is a positive number c and a constant vector d so
that aX(1) + bX(2)

d= cX+d where X(1) and X(2) are in-

dependent copies of X and where d= denotes equality in dis-
tribution [3, Def. 2.1.1]. Except for the well known Gaus-
sian, Cauchy or Lévy random vectors, explicit forms of the
Lévy-stable probability density functions (pdf) involve elab-
orated combinations of special functions that make them dif-
ficult to handle: an extensive review of these explicit forms
can be found in [4]. However, their characteristic functions
ΦX(u) = E[eıutX] have a closed form expression. In the fol-
lowing, ı =

√
−1 and at stands for the transpose of vector

a.

The classical representation of the characteristic function
of a d-dimensional Lévy-stable real random vector X reads
[3, th. 2.3.1]

ΦX(u) = exp
�
−
ˆ

Sd

��uts
��α�

1+ ıηα
�
uts

��
Λ(ds)+ ıut µ

�
(1)

where α ∈ [0; 2] is called the stability index, Sd = {u ∈Rd :
�u� = 1} denotes the unit sphere in Rd and Λ a finite mea-
sure on Sd called the spectral measure. Moreover the vector
µ in (1) is a location parameter (except for α �= 1 where the
term in the asymmetry function ηα contributes to the loca-
tion parameter [3, ex. 2.3.4]), and the asymmetry function
ηα(u) reads

ηα(u) =






−sign(u) tan
�πα

2

�
if α �= 1

2
π

sign(u) log |u| if α = 1.

The couple (Λ,µ) is unique and the value of the asymmetry
function ηα is irrelevant in the Gaussian case α = 2.

We note that in the univariate case d = 1, the unit sphere
S1 reduces to the discrete set {1,−1} so that the character-
istic function ΦX drastically simplifies [3, Def. 1.1.6 & Ex.
2.3.3] to

ΦX (u) = exp(−σα |u|α (1+ ıβηα(u))+ ıuµ) (2)

where σ = (Λ({1})+Λ({−1}))
1
α represents the scale pa-

rameter and β = Λ({1})−Λ({−1})
Λ({1})+Λ({−1}) ∈ [−1 ; 1] the skewness of

the Lévy-stable random variable X .
An equivalent representation for the characteristic func-

tion of a Lévy-stable random vector is as follows

ΦX(u) = exp
�
−
ˆ
D

��utG(y)
��α�

1+ ıβ (y)ηα
�
utG(y)

��

ˆ
×M(dy)+ ıut µ0

� (3)

where M is a finite measure, D is an M-measurable space,
β : D �→ [−1; 1] a measurable function and G : D �→ Rd a
measurable function such that

´
D �G(y)�α M(dy) < +∞ for

any α and moreover
´
D G(y) log�G(y)�M(dy) < +∞ if

α = 1 (see [3, §3.2]).
A third useful representation for the characteristic func-

tion of a Lévy-stable vector is the hyperspherical representa-
tion. We first remark that when the spectral measure admits
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a density with respect to the Haar measure on the sphere, it
can be denoted as λ so that Λ(ds) = λ (s)A (ds) where A (·)
denotes the surface element of the sphere. Vector s in (1)
can be represented by its hyperspherical coordinates, namely
s j(θ) =

�
∏ j−1

k=1 sinθk

�
cosθ j where θ = [θ1 . . . θd−1]t ∈

Dθ = [0; π)d−2 × [0; 2π), where the non-existing angle θd
is set to zero by convention and where for j = 1 the empty
product is unity by convention. With a slight abuse of nota-
tion, we will denote λ (θ) = λ (s(θ)) while changing to hy-
perspherical coordinates makes appear the Jacobian of the
transformation J(θ) = ∏d−2

k=1 sind−k−1 θk in the expression
(for d = 2 the Jacobian is unity).

2.2 Some properties
We first remark that Lévy-stable random vectors admit no
covariance matrix when α < 2. This, together with the sta-
bility property, explains the frequent use of such vectors for
impulsive noise modeling. Trivially, when α = 2, the char-
acteristic function has the form ΦX(u) = exp

�
− 1

2u
tRu

�
,

where R =
´

Sd
sstΛ(ds).

A Lévy-stable random vector has independent compo-
nents if and only if its spectral measure is discrete and con-
centrated on the intersection of the axes with the sphere Sd
[3, Ex. 2.3.5].

When the location parameter µ = 0 and the measure Λ
is symmetric, the distribution is said symmetric Lévy-stable
and the asymmetry function ηα vanishes in (1) [3, Th. 2.4.3].
This symmetry should be named centro-symmetry, i.e. sym-
metry with respect to the origin. In the hyperspherical rep-
resentation, centro-symmetry is expressed by the invariance
of density λ under the symmetry θ1 → π−θ1. Note that the
probability density is then also centro-symmetric.

When α < 2, a Lévy-stable random vector X is spheri-
cally symmetric (or rotationally invariant) if and only if µ =
0 and its spectral measure is uniform, that is Λ(ds) ∝ A (ds).
Thus, the characteristic function is a function of the norm
�u� only, of the form1 ΦX(u) = exp(−σα�u�α) [3, §2.6 &
Prop. 2.5.5].

Finally, a vector is said elliptically distributed if its iso-
probability contours are ellipsoids. Equivalently, the iso-
characteristic function contours are also ellipsoids, and one
can show that the characteristic function is [3, Chap. 2]

ΦX(u) = exp
�
−

�
utRu

� α
2
�

(4)

where R is a symmetric definite positive matrix. The spec-
tral measure of a Lévy-stable elliptical distribution is studied
in [3, Prop. 2.5.8] in a very formal way as a composition
of measures. The existence of each measure is proved but
the global measure or its density is not expressed explicitly.
However, we prove here that a more detailed result can be
obtained, namely: when α < 2, the Lévy-stable vector X is
elliptical if and only if there exists a symmetric definite pos-
itive matrix R such that the spectral density of X has the
form

λ (s) ∝ 1

|R| 1
2 (stR−1s)

α+d
2

(5)

1Note the presence of the scaling factor 2−
α
2 in [3, Prop. 2.5.5]. We

chose here to omit this factor to remain consistent with the scalar definition
(2).

We skip here the details of the proof.
Let us now turn to the study of the joint distribution of the

location and velocity of the harmonic oscillator submitted to
a Lévy-stable excitation.

3. HARMONIC OSCILLATOR EXCITED BY
LÉVY-STABLE NOISE

3.1 Notations and normalization
A damped harmonic oscillator submitted to a random force
is described by the fundamental equation of dynamics that,
after normalization, reads

ẍ(t) =−2ζ ω0ẋ(t)−ω2
0 x(t)+ξ (t) (6)

where ω0 is the undamped pulsation and ζ the damping ratio,
assumed here strictly positive (we exclude the unstable pure
oscillator). The external force ξ (t) will be assumed to be a
random process with independent and identically distributed
Lévy-stable samples , i.e. ∀t �= t �, ξ (t) and ξ (t �) are indepen-
dent and have the same characteristic function (2). Without
loss of generality, we assume a null location parameter µ
and a unit scaling parameter σ . As a consequence, for any
set of epochs t1 ≤ t2 ≤ . . . , the increments

´ ti+1
ti

ξ (t)dt are
independent with characteristic function (2), scale parameter
σ = (ti+1− ti)

1
α and location parameter µ = 0; we note that

the integral
´ ti+1

ti
ξ (t)dt is a Lévy motion, see [3, Chap 3].

In the case where the noise ξ (t) is Gaussian, the dis-
tribution of the phase-space is well-known to be bivariate
Gaussian, thus showing two remarkable properties: it is el-
liptically invariant (and thus centro-symmetric), and with in-
dependent components. In the case of a Lévy-stable noise
ξ (t) with parameter 0 < α < 2, it is shown without proof
in [1] that both previous properties are lost. As a conse-
quence of Maxwell-Hershell’s theorem [5, Prop. 4.11], we
know that both properties can in fact hold simultaneously in
the Gaussian case only. Nevertheless, like in the Gaussian
case, the joint distribution of the harmonic oscillator with
Lévy-stable noise is jointly Lévy-stable again, as shown in
[1, 2]. Here, we will compute explicitly the spectral mea-
sure that characterizes this bivariate Lévy-stable distribution.
As a consequence, this proves that the bivariate distribution
of the components (x,v) can neither have independent com-
ponents, nor be elliptically invariant. However, it remains
centro-symmetric.

3.2 Solution of the equation
Using the Laplace transform, the solution of equation (6) is
found to be

x(t) =
ˆ t

−∞
G(t− t �)ξ (t �)dt � (7)

where G(t) = [Gx(t) ; Gv(t)]t is the vector of the Green
functions of the location Gx(t) and of the velocity Gv(t) =
d
dt Gx(t), that reads

G(t) =
e−ζ ω0t R+(t)

ωc

�
sin(ωct)

−ζ ω0 sin(ωct)+ωc cos(ωct)

�

where the (complex) pulsation ωc of the oscillator reads

ωc = ω0
�

1−ζ 2 (8)
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and A is the indicator function of the set A. In the under-
damped regime ζ < 1, the solution is a damped sinusoidal
function whereas it is exponentially decreasing in the over-
damped regime ζ > 1. The critical case ζ = 1 is recovered
by taking the limit ζ → 1 in either of the preceding regimes.

It can be shown that the bivariate characteristic function
ΦX is given by

ΦX(u) = exp
�
−
ˆ

R+

��utG(t)
��α�

1+ ıβηα
�
utG(t)

��
dt
�

(9)

This result can be obtained by considering the limit of the
discretized integrals (7), that let appear the independent in-
crements with scale parameter δ t

1
α (see e.g. [1] or [3,

chap. 3] and [2] for a more rigorous proof). With the
Green functions above mentioned, one can check that since
ζ �= 0, ∀ 0 < α < 2,

´
R+
�G(t)�α dt < +∞ and moreover that´

R+
G(t) log�G(t)�dt < +∞. Thus, the couple (x(t),v(t))

is Lévy-stable distributed for all t, as appears by choosing
the integration set D = R+, the integration variable y = t,
the Lebesgue measure M(dt) = dt, the location parameter
µ0 = 0 and a constant skewness β in (3).

In the sequel, we will concentrate on the symmetric case
β = 0. In order to compute explicitly the spectral measure
given formally in [3, §3.2], we normalize the Green vector
G and make the appropriate changes of variable to write the
integral in (3) using the angular variable θ . Some algebra
leads to

λ (θ) =
1

�
ω2

0 cos2 θ + sin2 θ +2ζ ω0 cosθ sinθ
� α

2 +1

×1
2

e−
ζ ω0
ωc arctan

�
ωc

ζ ω0+tanθ

�

D(θ)

(10)

with, in the underdamped case,

D(θ) =
exp

�
−παζ ω0

2ω

�

2sinh
�

παζ ω0
2ω

�

+ (−arctan(ζ ω0) ; π
2 )∪(π−arctan(ζ ω0) ; 3π

2 )(θ)

and in the overdamped case,

D(θ) = (−arctan(ζ ω0−ω), π
2 )∪(π−arctan(ζ ω0−ω), 3π

2 )(θ).

The critical case is obtained by taking the limit ζ → 1. Note
that the support of λ (θ) is not the entire circle S2 in both
critical and overdamped regimes: clearly, in both cases, the
coordinates (x,v) cannot be elliptically distributed.

4. PROPERTIES OF THE COORDINATES OF THE
HARMONIC OSCILLATOR EXCITED BY

LÉVY-STABLE NOISE
Clearly, the measure Λ has a density and thus does not con-
centrate on the intersection of the axes with the sphere; thus
the components are not independent. To assess quantitatively
the dependence between these components, different mea-
sures can be used. In their study, Sokolov et al. propose
various ad hoc measures of dependence, such as a covari-
ation measure (similar to a covariance, but with fractional

order moments since Lévy-stable distributions do not admit
covariance). Here, we will concentrate on the other property
of the distribution in the Gaussian case: ellipticity.

We note that the spectral measure λ satisfies λ (θ) =
λ (θ ±π): in other words, the centro-symmetry property ob-
served when the input of the harmonic oscillator is Gaussian
is preserved in the Lévy-stable context. However, ellipticity
is lost. Indeed, it is clear that none of the expressions (10)
of the spectral measure can be put under the form (4) in any
regime; thus the joint distribution of the coordinates (x,v)
is not elliptical. However, we propose to characterize more
precisely the deviation from ellipticity.

First, from (4), assuming ellipticity, the characteristic
function in the hyperspherical domain should be proportional
to

�
a2 cos2 θ +b2 sin2 θ +2ρabcosθ sinθ

�− α
2 −1 where the

corresponding matrix R−1 =
�

a2 ρab
ρab b2

�
is definite pos-

itive. Looking at (10) shows that the spectral measure is in-
deed of this form up to a non-constant “modulation” term,
the “elliptical” term being

λed ∝ 1

(stMeds)
α
2 +1

with Med =

�
ω2

0 ζ ω0

ζ ω0 1

�
. (11)

However, the matrix Med is positive definite if and only if
ζ < 1. For ζ ≥ 1, the result is not contradictory with the
necessary positivity of λ : indeed, in this case, when λed ≤ 0
the “modulation” term vanishes. In conclusion, it is clear
that the distribution of (x,v) is not elliptical neither in the
overdamped context, nor in the critical case. Obviously, due
to the “modulation” term , the distribution of (x,v) is not
elliptical in the overdamped case either; but in this case, λed
can be viewed as a spectral measure and the “elliptical” part
of the distribution may be studied.

In all cases, one can also examine further the elliptical-
like part λed of the spectral measure. From (11) one can de-
termine the symmetry axes of λed. The symmetry directions
θ m

ed and θ M
ed , given by the eigenvectors of Med, are

θ m,M
ed = arctan



1−ω2
0

2ζ ω0
±

�

1+
�

1−ω2
0

2ζ ω0

�2


 . (12)

At the opposite, for elliptical characteristic functions Φ, the
unit vector s = sm (resp. s = sM) that minimizes (resp. max-
imizes) Φ(s) coincides with the long (resp. short) axis of the
constant characteristic function ellipsoids. For the harmonic
oscillator, although not elliptically distributed, one can then
define directions as

θ m,M
ho = argmax

θ

�
±
ˆ

S2

|ut(θ) s|α ds
�

with u ∈ S2. (13)

A measure of the distance between the axes θho and θed
should also be considered as a measure of the distance of the
distribution to ellipticity. However, one must keep in mind
that one can find a zero distance while the distribution is not
elliptical. Moreover, since (x,v) is not elliptical, there is no
reason why the axes θ m,M

ho should be symmetry axes (indeed
they are not). And there is no reason why these axes should
be orthogonal either.
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One can also adopt another point of view to assess the
non-ellipticity of the law. Again, for an elliptical distribu-
tion, the characteristic function (9) (with β = 0) must reduce
to the form (4). The idea is then to measure the deviation of´

R+
|utG(t)|α dt from the function (utRu)

α
2 . Due to the re-

lation
´

R+
|(au)tG(t)|α dt = |a|α

´
R+

|utG(t)|α dt, one can
restrict u to be on the unit sphere, u = s(θ). Taking the
power 2

α of both quantities, the goal is then to measure the
distance between the function

f (θ) =
�ˆ

R+

��s(θ)tG(t)
��α dt

� 2
α

(14)

and the quadratic form g(θ) = s(θ)tRs(θ) where we con-
straint R to be symmetric. A possible measure of discrep-
ancy that yields an explicit expression for R is the L2 dis-
tance between f and g: writing

´ 2π
0 ( f (θ)− g(θ))2dθ in

terms of the entries of R and equating to zero the derivatives
in the entries of this matrix yields

R =

�
f0 +2 fc 2 fs

2 fs f0−2 fc

�
(15)

with 




f0 =
1
π

ˆ π

0
f (θ)dθ

fc =
1
π

ˆ π

0
f (θ)cos(2θ)dθ

fs =
1
π

ˆ π

0
f (θ)sin(2θ)dθ

(16)

Simple algebra shows that for α = 2, matrix R coincides
with twice the covariance matrix of the Gaussian compo-
nents2. In the general case, a natural way to assess the non-
ellipticity of the couple (x,v) consists in comparing (10) with
(5) in terms of any metric we wish. For example, one can
study again the axes of this “best” elliptic approximation of
the true distribution,

θ m,M
R = arctan



− fc

fs
±

�

1+
�

fc

fs

�2


 . (17)

Searching the best least squares elliptic approximation of the
spectral density or of the characteristic function is a difficult
task. However, a measure of discrepancy from ellipticity can
be built as the distance between the characteristic function
and that using the elliptic approximation just presented, or
any distance involving these quantities.

Figure 1 depicts the spectral measure for the three
regimes together with its “elliptical” part λed when the in-
put noise of the oscillator is Cauchy (α = 1 and β =
0). The lines represent the axes θho and the (symme-
try) axes θed of the elliptical part. The angles are also
reported in table 1. Figure 2 gives the level curves of
the characteristic function, or more precisely the curves
Lλ (C) =

�
u = [ux uv]t ∈ R2,

´
Sd

|uts|α λ (s)ds = C
�

for

2The scale factor 2 comes from our definition (4), that is consistent with
definition (2).

the true spectral measure and for its elliptical part λed, while
the axes θho and θed are also represented. It clearly appears
in these figures that if centro-symmetry is conserved, elliptic-
ity is lost. Visually, it is clear in the critical and overdamped
cases (divergence of the elliptical part of the spectral density
and/or of the spectral density itself). One can also see the
presence of a “modulation” factor applied to λed in eq. (10).
Even the symmetry with respect to axes is lost. Finally, the
axes θho have no reasons to be orthogonal; in fact they are
not as one can check both in the figures and in the table.
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Figure 1: Density of the spectral measure λ (s), with s =
[sx sv]t ∈ S2 (solid lines in bold), that characterizes the
location-velocity Lévy-stable distribution compared to the
“elliptical” part λed(s) eq. (11) (dotted line in bold). In all
cases, α = 1 and ω0 = 1. Curve (a) depicts the underdamped
case for ζ = .5, curve (b) the critical case (ζ = 1) and (c)
represents the overdamped case with ζ = 2. The circle in
dotted line is for indication only. The axes in solid lines rep-
resent the direction θ m,M

ho eq. (13) while the axes in dotted
lines represent θ m,M

ed eq. (12).
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Figure 2: Level curves Lλ (C) for several values of C. In
all cases, α = 1 (β = 0) and ω0 = 1. Curve (a) depicts the
underdamped case (ζ = .5), curve (b) the critical case (ζ = 1)
and (c) represents the overdamped case with ζ = 2. The axes
θ m,M

ho eq. (13) (solid line) and θ m,M
ed eq. (12) (dotted line) are

shown in the figure.

Figure 3 represents the spectral density, compared to the
best elliptical approximation λR given from eqs. (5)-(15),
together with the θho axes and the (symmetry) axes θR. It
gives the level curves representation of the true characteris-
tic function, of that obtained from the elliptical part (when it
makes sense, i.e. in the underdamped case) and of that ob-
tained from the elliptical approximation. These figures con-
firm visually the discrepancy of the phase space distribution
to ellipticity. As expected from the form of λ , it is more
pronounced in the critical regime and even more in the un-
derdamped regime.
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Figure 3: Density of the spectral measure λ (s) (solid lines
in bold) compared to the elliptical density λR(s) eqs. (5)
(dotted line in bold). The parameters are those of figure 1
and the axes are θ m,M

ho eq. (13) (solid line) while the axes in
dotted line are now θ m,M

R eq. (17).
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Figure 4: Comparison of the level curves Lλ (solid line), Lλed
(dotted line, when it makes sense, i.e. in the underdamped
case), and LλR (dashed line). The parameters and axes are
those of figure 3.

Figure 5 represents the quadratic error between´
Sd

|uts|α λ (s)ds and (utRu)
α
2 where u varies on the unit

circle. In some sense, it measures an error between the level
curves Lλ (C). This error is plotted as a function of α and
of ζ respectively. These figures confirm the previous obser-
vations. The loss of ellipticity increases as the input force
distribution deviates from Gaussiannity. Similarly, the less
the oscillator is damped, the more the distribution is ellipti-
cal.
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Figure 5: Quadratic error between
´

Sd
|uts|α λ (s)ds and

(utRu)
α
2 where u varies on the unit circle; (a) as a function

of α (ζ = .5 for the solid line, ζ = 1 for the dashed-dotted
line, and ζ = 2 for the dashed line), and (b) as a function of
ζ (α = .9 for the solid line, α = 1 for the dashed-dotted line,
and α = 1.1 for the dashed line). The other parameters and
axes are those of figure 3.

underdamped critical overdamped
ζ = .5 ζ = 1 ζ = 2

θ m
ho 57.3◦ 61.8◦ 75.0◦

θ M
ho −43.4◦ −29.1◦ −14.5◦

θ m
ed 45.0◦ 45.0◦ 45.0◦

θ M
ed −45.0◦ −45.0◦ −45.0◦

θ m
R 55.5◦ 67.3◦ 78.7◦

θ M
R −34.5◦ −22.7◦ −11.3◦

Table 1: Angles corresponding to the maximal direc-
tions/symmetry axes: θ m,M

ho eq. (13) for the spectral density
λ eqs. (10), θ m,M

ed eq. (12) for the “elliptical” part λed eq.
(11) and θ m,M

R eq. (17) for the elliptical density λR eq. (5).
The parameters are those of figure 1

5. CONCLUSION
We have shown that the spectral measure of the harmonic
oscillator with Lévy-stable noise can be expressed explicitly
in all its regimes. This derivation allows to deduce that (i)
the mutual distribution of the location and velocity is again
Lévy-stable distributed (ii) except in the Gaussian case, the
ellipticity of this distribution is lost (iii) several measures can
be used to characterize this discrepancy to ellipticity (axes,
error between the true distribution and its elliptical approx-
imation). Further studies include the general n-dimensional
case as in [2]: we are interested in the determination of the
minimal set of constraints that an n-dimensional linear sys-
tem should meet so that ellipticity of the output distribution
is ensured.
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