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ABSTRACT 

This paper introduces a multiband spectrum sensing method 
that can accomplish the sensing task using sampling rates 
considerably lower than the ones demanded by the uniform-
sampling-based techniques. It utilises nonuniform sampling 
in conjunction with an appropriate spectral analysis tool. 
The approach is referred to as Spectral Analysis of Random-
ized Sampling (SARS), namely for the Random Sampling on 
Grid (RSG) scheme. The statistical characteristics of the 
adopted periodogram-type estimator are presented and the 
effects of the cyclostationary nature of the processed commu-
nication signals on SARS are addressed. Reliability guide-
lines that ensure the credibility of the sensing procedure amid 
a sought system performance are derived. Unlike a number 
of previously reported nonuniform sampling schemes e.g. 
Total Random Sampling (TRS), the RSG provides safeguards 
making it more suitable for implementation in hardware. 
Numerical examples testify the presented analytical results.   

1. INTRODUCTION 
Spectrum sensing involves scanning part(s) of the radio spec-
trum in search for a meaningful activity e.g. a transmission. 
The envisioned Cognitive Radio (CR) technology has initi-
ated intensive research into effective spectrum sensing tech-
niques [1, 2]. To perform the sensing task using uniform-
sampling-based DSP without prior knowledge of the incom-
ing signal’s frequency support, the sampling rates should be 
at least twice the total monitored frequency range(s) regard-
less of the spectral activity within [3]. Otherwise aliasing 
would introduce irresolvable detection problems. In the event 
of examining wide bandwidths, such a constraint can pose a 
challenge to the system designer where high sampling rates 
and treating large quantities of data are required [1, 2, 4, 5]. 
Such stringent demands can be beyond the capability of the 
commercially available data acquisition devices i.e. Ana-
logue to Digital Converters (ADCs).  
In this paper, we proposed a method that can reliably sense 
the spectrum using an arbitrary low-rate nonuniform sam-
pling and appropriate processing of the signal-a methodology 
known by Digital Alias-free Signal Processing (DASP) [6]. 
Operating at low sampling rates, can exploit the sensing de-
vice resources e.g. power more efficiently and/or evade the 
possible need for a specialized hardware. Here, the scenario 
where the overseen wide bandwidth consists of a number of 
disjoint spectral subbands is considered i.e. Multiband Spec-
trum Sensing (MSS). In such scenarios, MSS approaches that 
are based on nonparametric spectral analysis are viewed as 
adequate low-complexity options [1, 2]. A periodogram-type 

estimator, a tool that retained its popularity [1, 2], is deployed 
in this study for the SARS purpose.  
Low rate tactful sampling and processing aimed at mitigating 
the aliasing/bandwidth limitation of uniform sampling has 
triggered an immense interest in the emerging Compressive 
Sensing (CS) trend e.g. [4, 5]. Reconstructing the sampled 
signal is inherently an integrated part of CS that imposes 
sampling frequencies above the Landua rate i.e. twice the 
effective bandwidth of the present signal not the monitored 
bandwidth. The difference between the latter two can be sig-
nificant with low spectrum occupancy e.g. some CR systems. 
However, reconstruction might not be needed in certain tasks 
e.g. MSS. CS capability and performance comes at a consid-
erable computational cost accompanying the optimisations it 
entails. Whilst the simplicity, low computational load and not 
having a lower limit on the utilised sampling rate are the 
main advantages of the proposed SARS method over CS or 
other approaches e.g. spectrum-blind sampling [7]. 
A SARS technique that relies on the TRS scheme was stud-
ied in [8]. Related work in the literature on MSS with SARS 
can be found therein.  It was shown that MSS can be carried 
out with arbitrary low sampling rates. However, any two or 
more points of a TRS sequence can be arbitrarily close i.e. 
TRS requires infinitely fast ADC(s). Other randomised sam-
pling schemes for DASP e.g. Poisson sampling suffer from a 
similar defect [6]. In this paper, an alternative sampling 
scheme, i.e. RSG, is adopted. It guarantees a minimum dis-
tance between any two sample points, requests lower sam-
pling rates than TRS and is better suited for the use of FFT-
like algorithms [9]. It is more practical and efficient. The 
statistical characteristics of SARS with RSG are presented 
here and the impact of the cyclostationary nature of commu-
nication signals is scrutinised. Unlike [8, 9], the nonstationar-
ity of the processed signal is not circumvented – a widely 
adopted practice in the literature [1, 2]. It is shown to have 
repercussions especially on the SARS accuracy i.e. abrupt 
deterioration at certain frequency points. We provide guide-
lines to ensure that the MSS procedure meets the sought de-
tection probabilities. The system subbands can have different 
power levels e.g. due to the propagation channel effect(s). 
This is distinct from [8, 9] where the surveyed subbands are 
assumed to be of equal power levels and a generic Cheby-
chev’s inequality parameter depicts the MSS performance. 

2. MULTIBAND SPECTRUM SENISNG 
2.1 System Model and Problem Formulation 
 

The frequency range of interest encompasses L  disjunct 
contiguous subbands each of width CB  i.e. the monitored 
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bandwidth [ , ]in inf f B= +B  of a predefined inf  has a width 

CB LB= . The incoming multiband signal at the sensing de-

vice is: 
1

( ) ( )M
mm

x t x t
=

=∑  where M  is the unknown number 
of the concurrently active subbands and ( )mx t  is the trans-
mission corresponding to the -thm  active subband. The 
samples of the zero mean wide sense cyclostationary signal 

( )x t  are contaminated with additive white Gaussian noise 
with variance NP  i.e. ( ) ( ) ( )n n ny t x t n t= + .  Due to adverse 
system conditions e.g. propagation-channel effects, the indi-
vidual transmissions ( )mx t ’s can be of various power levels. 
Our objective in this study is to devise an algorithm that is 
capable of scanning the overseen bandwidth B  and unveil-
ing the active subbands. It should operate at rates signifi-
cantly lower than  the theoretical minimum permissible uni-
form sampling one 2B (not always achievable) [3]. 
Let ( )kx t  be the incoming linearly modulated continuous-
time signal corresponding to one of the system subbands: 

         , , , ,( ) ( , ) ( , )k n k i k n k q kn n
x t a s t n b s t n+∞ +∞

=−∞ =−∞
= +∑ ∑ .       (1) 

The coefficients ,{ }n k na ∈]  and ,{ }n k nb ∈]  are the transmitted 

symbols with variances 2
,a kσ  and 2

,b kσ  respectively.                                                                        
Whilst , , , ,( , ) [ ( )cos(2 )] ( )i k i k S k C k ks t n p t nT f t h tπ= + ⊗ , 

, , , ,( , ) [ ( )cos(2 0.5 )] ( )q k q k S k C k ks t n p t nT f t h tπ π= + + ⊗ , ⊗  de-
notes the convolution operation and ( )kh t is the propagation 
channel impulse response over the -thk  subband with a cen-
tral frequency ,C kf  and symbol rate , ,1/S k S kf T= . Each of 

, ( )i kp t  and , ( )q kp t  are the baseband shaping filter(s) in the 
inphase and quadrature branches respectively. 
 

2.2 Random Sampling on Grid 
 

RSG scheme selects randomly N  sampling instants inside 
an analysis time window 0[ , ]r r r T= +T t t . Let 0/N Tα =  
denote the average sampling rate. The RSG samples are re-
stricted to a specific finite set of time-instants that are equally 
spaced and placed within rT . They form an underlying uni-
form sampling grid whose sampling rate and total number of 
samples are given by 1/g gf T=  and gN  respectively. Any of 
the grid points can be selected only once, i.e. without re-
placement, with equal probability where gN

NC  possible sam-
pling sequences of length N  exist. 
 

2.3 Adopted Sensing Technique 
 

The approach adopted here deploys a periodogram-type tool: 
2

2
0 1

( , ) ( 1) ( ) ( ) ( 1)n
N j ft

e r g n nn
X f N T y t w t e N Nπ μ−

=
= − −∑t  (2) 

 to estimate a detectable frequency representation of ( )x t  
from N  RSG noisy samples ( )ny t ’s  captured within rT . It 
is noted that estimating the signal’s exact PSD is not the ob-
jective and a frequency representation that enables sensing is 
sufficient. Tapering function ( )w t  is used to suppress spec-

tral-leakage where 2
1

( )gN
gn

w nTμ
=

=∑ . The standard deviation 

of a periodogram-type estimator is known to be of the same 
order as its expected value [10]. To reduce this uncertainly, 
we average a K  number of ( , )e rX ft  estimates where:    

1
ˆ ( ) ( , ) /K

e e rr
X f X f K

=
=∑ t                     (3) 

to enhance the estimation accuracy. This evokes shifting rT  
and the aligning of ( )w t . Non-overlapping uncorrelated sig-
nal windows of length 0T  are considered in this paper.  

The sensing technique adopted here comprises two steps: 
1) estimating the magnitude spectrum at selected frequency 
point(s) and 2) comparing the magnitude(s) to pre-set thresh-
old(s). We recall that the signal’s exact PSD is not the target. 
We seek inspecting one frequency point per subband (posi-
tioned at its centre) to establish its status i.e. L  spectral 
points are calculated. This can be achieved by performing 
spectral analysis within a suitably short time windows i.e. 
low resolution spectrograph. As shown in [8], 0 1/ CT B≥  of-
fers a practical guideline for choosing the analysis window. 
The sensing problem can be formulated as: 

        0,

1,

ˆ: ( )
ˆ: ( ) 1,2,

k e k k

k e k k

H X f

H X f k L

γ

γ

<

≥ = …
          (4) 

where kγ  is the threshold, 0,kH  hypothesis signifies the ab-
sence of an activity in subband k  and 1,kH  exhibits the pres-
ence of an activity. Below we show that (3) can deliver reli-
able spectrum sensing routine provided the adequate selec-
tion of the grid density, average sampling rate α  and K .  

3. STATISTICAL CHARACTERTISCS OF SARS  
We present the mean and variance of (3) to assess its ade-
quacy for the MSS pursuit and its accuracy. 

3.1 Targeted Frequency Representation 
By introducing a random variable nc  which takes a value of 
“1” if the -n th  grid point is considered and “0” otherwise 
where { }Pr 1 /n gc N N= =  and { } ( )Pr 0 /n g gc N N N= = − , it 

can be shown that [ ]( , ) ( , )r e rC f E X f=t t is: 

( , )( ) ( ) ( 1)
( , )

( 1)

d
rg S r g N

r
g g g

E fN N P N P
C f

N N f f μ

⎡ ⎤− + − ⎣ ⎦= +
−

P tt
t   (5) 

, 2 2
1

( ) [ ( )] ( ) /gN
S r g gn

P E x nT w nT μ
=

=∑t  is the windowed signal 

power and 
22

1
( , ) ( ) ( )g gN j fnTd

r g gn
f x nT w nT e π−

=
= ∑P t . It can 

be noticed from (5) that ( , )rC ft comprises a constant fre-
quency-independent component and the expected value of a 
discrete-time periodogram [10]. The former would not over-
shadow any distinctive feature(s) of [ ( , )]d

rE fP t  related to 
active transmission(s). Below, we show that [ ( , )]d

rE fP t  
serves as a detectable spectral component and is independent 
of rt  at selected frequency points i.e. kf ’s in (4). 

Provided that gf  is chosen such that ( ) ( ) 0W W gX f X f nf− =  

for 0n ≠ , n∈] , where 2( , ) ( ) ( )
r

j ft
W r t

X f x t w t e dtπ−

∈
= ∫ T

t  then: 
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2[ ( , )] [ ( , )]d
r g r gn

E f f E f nf
∈

= −∑P t P t
]

 i.e. avoid aliasing 

within B  whilst 2( , ) | ( , ) |r W rf X f=P t t . Bandpass sampling 
strategy [3] can be utilised to select gf . Thus, the adequacy 
of (2) for the MSS purpose is mandated by [ ( , )]rE fP t . First, 

let 2( ) ( )
r

j ft

t
W f w t e dtπ−

∈
= ∫ T

 , 2( ) ( ) j ft
m mH f h t e dtπ+∞ −

−∞
= ∫ , 

 2
, ,( ) ( ) j ft

i m i mP f p t e dtπ+∞ −

−∞
= ∫ , 2

, ,( ) ( ) j ft
q m q mP f p t e dtπ+∞ −

−∞
= ∫ , 

, , ,( ) ( ) ( )i m m C m i mP f H f f P f= +
�

, , , ,( ) ( ) ( )i m m C m i mP f H f f P f= −
�

, 

, , ,( ) ( ) ( )q m m C m q mP f H f f P f= +
�

, , , ,( ) ( ) ( )q m m C m q mP f H f f P f= −
�

. 
Noting the bandpass nature of ( )mH f  over the m-th subband 
and assuming ,C m Cf B>> , using (1) we obtain: 

2 2
, , , , , ,1

[ ( , )] 0.25 ( , ) ( , )M
r a m S m i m r b m S m q m rm

E f f F f f F fσ σ
=

= +∑P t t t   (6) 

*
, , , , , ,

* *
, , , , , ,

( , ) ( ) ( )

( ) ( ) ( ) ( )

i m r i m C m i m C m S mn

i m C m i m C m S m S m

F f P f f P f f nf

P f f P f f nf W f W f nf

+∞

=−∞
⎡= − − +⎣

⎤ ⎡ ⎤+ + + + ⊗ −⎣ ⎦⎦

∑t
� �

� �  (7) 

*
, , , , , ,

* *
, , , , , ,

( , ) ( ) ( )

( ) ( ) ( ) ( )

q m r q m C m q m C m S mn

q m C m q m C m S m S m

F f P f f P f f nf

P f f P f f nf W f W f nf

+∞

=−∞
⎡= − − +⎣

⎤ ⎡ ⎤+ + + + ⊗ −⎣ ⎦⎦

∑t
� �

� � (8) 

. The baud rate is related to the bandwidth ,W mB  of the base-
band shaping filter(s) by: , , ,0.5 W m S m W mB f B< ≤ where 

,W m CB B≤ . It implies: , , ,( ) ( ) 0i m i m S mP f P f nf+ =  and 

, , ,( ) ( ) 0q m q m S mP f P f nf+ =  if { 1,0,1}n∉ − . Hence, the compo-
nents of the summation in (7) and (8) are zero when 1n = ±  
as the assessed frequency points kf ’s in (4) are placed 
at/near the middle of the subbands i.e. at those frequencies: 

 { }
{ }

2 2 2, 2
, , , , ,

1

2 2 22
, , , , ,

[ ( , )]

( ) ( ) ( )
4

( ) ( ) ( )

r

M
S m

a m i m C m i m C m
m

b m q m C m q m C m

E f
f

P f f P f f W f

P f f P f f W f

σ

σ

=

=

⎡ ⎤− + + ⊗⎢ ⎥⎣ ⎦

⎡ ⎤+ − + + ⊗⎢ ⎥⎣ ⎦

∑

P t
� �

� �

    (9) 

. Therefore, ( , )r kfP t  and subsequently ( , )d
r kfP t  embod-

ies a distinctive distinguishable feature depicted by the Fou-
rier transform of the transmission filter(s) shaped by the 
propagation channel and is time-invariant at/near the centre 
of the subbands. This results in the expected value of (3): 

        
( ) ( 1) [ ( , )]ˆ ( )

( 1)

d
g SA g N r k

k
g g

N N P N P E fC f
N f f μ

− + −
= +

−
P t    (10)

where 
1

( ) /K
SA S rr

P P K
=

= ∑ t . Thus, ˆ ( )e kX f  in (3) is an admis-
sible tool to unveil the presence of an active transmission 
regardless of the used sampling rateα  (a suitable underlying 
grid density is presumed as described above). 
3.2 Estimator’s Accuracy 
The  accuracy of estimation of ˆ ( )C f  via (3) can be related to 
the variance via Chebychev’s inequality [8, 9].  We can write: 

2 2
0( , ) ( 1) ( , ) ( , ) ( 1)e r g RG r RG rX f N T R f I f N N μ⎡ ⎤= − + −⎣ ⎦t t t  (11)

where the phase shift ( , )r fθ t  is selected such that each of 

1
( , ) ( ) ( )cos(2 ( , ))N

RG r n n n rn
R f y t w t ft fπ θ

=
= −∑t t   and 

 
1

( , ) ( ) ( )sin(2 ( , ))N
RG r n n n rn

I f y t w t ft fπ θ
=

= −∑t t  are uncorre-
lated for every f . Similar to [9],  ( , )e rX ft  have a chi-
square distribution with two degrees of freedom according to 
Central Limit Theorem (CLT) and 2ˆ ( ) var{ ( , )}/e e rσ f X f K= t  
can be shown to be closely approximated at kf ’s in (4) by: 

[ ]2 2

2 2 2 2 2

ˆˆ ( ) 2 / 2( ) [( 1) ]

( ) 2 [( 1) ]
e k k k g SA N k g

g SA SA N N g

f D K N N P P D N f K

N N P P P P N f K

σ η ν

ν ν

= + − + −

′⎡ ⎤+ − + + −⎣ ⎦
(12) 

where ( 1) /( )g gN N Nν = − − , 2
1

( ) /K
SA SA rr

P P K
=

′ = ∑ t , ˆ0.5 1η≤ ≤

and [ ( , )]/d
k r k gD E f f μ= P t  ( [ ( , )]d

rE fP t  is time-invariant 
at the assessed frequency points). The first component in (12) 
forms a substantial part of the estimator’s variance. Here we 
show that ˆkη  can acquire its highest possible value ˆ 1kη =  
notably degrading the estimation accuracy for certain signals.   
Note that 

2( , ) [ ( , )]C r rf E R fλ =t t  and 2( , ) [ ( , )]S r rf E I fλ =t t   
which results in: ( , ) ( , ) [ ( , )]d

C r S r rf f E fλ λ+ =t t P t  where 

1
( , ) ( ) ( )cos(2 ( , ))gN

r g g g rn
R f x nT w nT fnT fπ θ

=
= −∑t t  and 

1
( , ) ( ) ( )sin(2 ( , ))gN

r g g g rn
I f x nT w nT fnT fπ θ

=
= −∑t t . Thus,  

          2 2 2( , ) ( , ) ( , ){ [ ( , )]}d
C r S r r rf f f E fλ λ η+ =t t t P t          (13) 

where 0.5 ( , ) 1r fη≤ ≤t  whilst ˆkη  is the average ( , )r kfη t  
along the K  signal windows at the kf  frequency point. 
From (13), it can be seen that ( , ) ( , ) ( , )r C r S rf f fλ λΓ = −t t t  
dictates the ( , )r fη t  value i.e. if ( , ) ( , )C r k S r kf fλ λ≈t t  we get 

( , ) 0r kfΓ ≈t , ( , ) 0.5r kfη ≈t  and ˆ 0.5kη ≈ which is the case 
for wide sense stationary signals as in [9]. It can be easily 
noticed that ( , ) 2 ( , )r rf fψΓ =t t . For the legitimate gf  value 
(see Section 3.1): , ,( ) ( ) 0i m i m gP f P f nf− =  for 0n ≠  ( n  is an 
integer) and similarly for the quadrate filter(s). Assuming that 
the analysis window tends to infinity to illustrate the impact 
of the cyclostationarity on (12) i.e. ( )W f  tends to a Dirac 
delta ( )fδ , ( , )r fψ t  is defined by: 

2
1

( , ) 0.5cos(2 ( , )) ( , )M
r r g m r gn m

f f f G f nfψ θ
∈ =

= −∑ ∑t t t
]

  (14) 

for the M  concurrently active subbands where 

, 1 , ,

2 , ,

( , ) 0.125 ( ) ( 0.5 )

( ) ( 0.5 )

m r S m C m S ml

C m S ml

G f f f f f lf

f f f lf

ξ δ

ξ δ

+∞

=−∞

+∞

=−∞

⎡= − −⎣
⎤+ + − ⎦

∑

∑

t
     (15) 

  2 2 2 2 2
1 , , , , , ,( ) ( ) ( ) ( )m a m i m C m b m q m C mf H f P f f P f fξ σ σ⎡ ⎤= − − −⎣ ⎦      (16) 

  2 2 2 2 2
2 , , , , , ,( ) ( ) ( ) ( )m a m i m C m b m q m C mf H f P f f P f fξ σ σ⎡ ⎤= + − +⎣ ⎦ .   (17) 

Formulas (14)-(17) show that ( , )r fψ t  can have nonzero 
values concentrated at frequencies equal to multiples of half 
of the symbol rate ,S mf  and belong to the m-th active sub-
band. Such peaks are experienced when any mismatch be-
tween 2

, , ( )a m i mP fσ  and 2
, , ( )b m q mP fσ  takes place generating 

discrepancies between ( , )R r fλ t  and ( , )I r fλ t . This yields 
abrupt surges in the estimation variance at the corresponding 
frequencies according to (12) and (13). This phenomenon is 
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clearly observed with BPSK signals where only an inphase 
branch is present. Thus ( , )r kfη t  and subsequently ˆkη  can 
tend to their maximum values causing noticeable deteriora-
tion in the estimator’s accuracy in case kf  falls at/near the 

,0.5n S mf nf=  frequency(ies) that belong(s) to the -thm  active 
transmission band. Whilst for QAM and QPSK, typically 

2 2
, , , ,( ) ( )a m i m b m q mP f P fσ σ=  i.e. ( , ) 0r fψ ≈t  and ˆ 0.5kη =  is 

commensurate. If no beforehand knowledge is available on 
the modulation scheme characteristics, ˆ 1kη =  should be se-
lected to avoid any unforeseen anomalies in the estimator’s 
performance. Therefore, the accuracy of (3) can be affected 
by the signal’s cyclostationarity and any processing task that 
relies on the spectral analysis, e.g. MSS, should consider 
such aspect. The accuracy of the above analysis was verified 
through numerical examples (not shown here). 

4. RELIABLE SPECTRUM SENSING 
The reliability of a sensing technique is reflected by its abil-
ity to meet a sought system behaviour that is commonly ex-
pressed by the Receiver’s Operating Characteristic(ROC) [1]. 
Here, we procure the reliability recommendations to ensure 
that the proposed method satisfies the sought ROC probabili-
ties of a targeted subband indexed by k  in the sequel.  
4.1 Reliability Recommendations 
According to CLT, ˆ ( )eX f  can be approximated by a normal 
distribution at every f  for large K  (in practice 20K ≥ suf-
fices[1]). This is validated below by simulations even for 

20K < . Thus, (3) can be compactly written as: 
2

0, 0,
ˆ ( ) ( , )e k k kX f m σN∼ , 0, ( )k km C f= �  and 0, ˆ ( )k e kfσ σ=  for 

0,kH  and similarly 2
1, 1,

ˆ ( ) ( , )e k k kX f m σN∼  for 1,kH . From (4), 
the probability of a false alarm in the -thk subband is: 

  , 1, 0, 0, 0,( ) Pr{ } [( ) / ]f k k k k k k kP H H Q mγ γ σ= = −      (18) 

and that of correct detection is: 
                 , 1, 1, 1, 1,( ) Pr{ } [( ) / ]d k k k k k K kP H H Q mγ γ σ= = −       (19) 

for a preselected threshold value kγ  where ( )Q z  is the tail 
probability of normal distribution. In practice, the user typi-
cally specifies: ,f kP ≤ Δ  and ,d kP ≥ A . From (18) and (19): 

        min, max,k k kγ γ γ≤ ≤          (20) 
1

min, 0, 0,( )k k km Qγ σ−= + Δ , 1
max, 1, 1,( ) ( )k k k km Q fγ σ−= + A  and 

        ( ) ( )1 1
1, 0, 0, 1,k k k km m Q Qσ σ− −− ≥ Δ − A            (21) 

which defines the reliability condition of the MSS. The 
mean and standard deviation values in (18) and (21) can be 
directly obtained from (10) and (12) respectively. Adopting 
a conservative approach, it can be shown that (21) produces: 

{ }2
1 1 2 ˆ( ) ( ) 2 2 kK Q K Q K K η− −≥ Δ − + +� � �A ,            (22) 

12 ( ) 1 ( 1) ( ) ( 1)C k g g g gK B N N N N SNR N N N Nφ α−⎡ ⎤= − + − − −⎣ ⎦
�

and /SA NSNR P P= . Whilst, ,/k SA SA kP Pφ =  is the ratio of the 
total signal power to that occupying the targeted subband. 

Formula (22) is a conservative lower bound on the number 
of needed window averages to fulfil the pursed detection 
probabilities. It is a function of the average sampling rate, 
signal to noise ratio, the active subbands power ratios and 
the uniform grid density. The recommendation demonstrates 
the trade-offs between the number of estimate averages and 
the deployed sampling rate in a particular scenario. It can be 
used to decide on the average sampling rate for a number of 
estimate averages possibly demanded by practical con-
straints such as latency in a continuous processing environ-
ment. The impact of the nonstationary nature of the proc-
essed signals is manifest by ˆkη  (see Section 3). Formula 
(22) affirms that the sensing task can be accomplished with 
arbitrarily low sampling rates at the expense of longer signal 
observation windows. A numerical example is presented 
below to verify its accuracy. If more than one subband is 
targeted, the user should survey their individual α / K  re-
quirements via (22). Aiming to detect a weak or high per-
formance subband(s) would request more K  and/or higher 
α  compared to a stronger or lower performance ones. The 
thresholds needed in (4) for each subband is set by (20).  
The spectral peaks nD ’s for 1,2,n L= …  can be learnt a priori 
when the transmissions are known to be present as in [1, 2]. 
Such knowledge can be exploited to determine kφ  and the 
parameters needed for calculating the thresholds in (20) e.g. 
for the severe cases when the maximum expected subbands 
activity is incurred. Correlated and/or overlapping signal 
windows can be easily incorporated into the analysis above 
by using existing results in the literature on variance reduc-
tions e.g. Welch periodograms [10]. Cooperation among a 
number of possible sensing devices can be implemented at a 
network level higher than the studied physical level.    
4.2 RSG versus TRS and Uniform Sampling 
RSG becomes identical to TRS as the underlying grid rate 
tends to infinity, and (22) emerges as:  

    { }2
1 1 2 ˆ( ) ( ) 2 2TRS TRS TRS TRS kK Q K Q K K η− −≥ Δ − + +� � �A         (23) 

where 12 [1 ]/( 1)TRS C kK B N SNR Nφ α−= + −� . Whilst, the 
scheme becomes uniform sampling when all the grid points 
are considered and the recommendation reduces to: 

          { }2
1 1 2 ˆ( ) ( ) 2 2US US US US kK Q K Q K K η− −≥ Δ − + +� � �A        (24) 

where  12 /US C k USK B SNR fφ −=�  and USf  is the uniform sam-
pling rate that is appropriately set to avoid aliasing within B .  
Comparing RSG and TRS, it can be shown that TRSK K<  for 
a reasonable gf . Formulas (22)-(24) offer a means to evalu-
ate the requirements of each of their corresponding sampling 
scheme and assess the benefits/complexity of SARS with 
RSG. They can be used to examine the number of needed 
signal samples of each of the schemes. This can be a crucial 
factor as the adopted MSS involves discrete-time Fourier 
transform or an optimized version. Unlike TRS and Poisson 
sampling, RSG maintains a minimum distance between the 
collected samples i.e. gT  and is better suited for FFT-like 
algorithms e.g. zero filling of unused grid points [6]. 
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5. SIMULATIONS 
Consider a multiband system comprising 40L =  contiguous 
subbands where 2.5CB = MHz and they are located in 

[ ]1.65,1.75=B GHz. QAM signals are transmitted over the 
active subbands ( i.e. ˆ 0.5kη = ) noting that the SNR  is 1.6 
dB. The grid rate 220gf = MHz which satisfies 

( ) ( ) 0W W gX f X f nf− =  if 0n ≠ ( n  is an integer) is used 
along with a Blackman window of length 0 1T = us. A sam-
pling rate 68α = MHz is decided, it is significantly lower 
than the minimum valid uniform sampling rate i.e. 220 MHz. 
The aim is to fulfil the detection requirements of the targeted 
subband centred at 31f . The user specified: ,31 31( ) 0.05fP γ ≤  
and ,31 31( ) 0.96dP γ ≥ . For 31 2.12φ =  (four simultaneously 
active subbands), 11K ≥  estimates need to be averaged in 
(3) to meet the sought system performance according to (22)
. In Fig. 1a, we show the ROC of SARS with RSG method 
for a threshold sweep and in Fig. 1b the probabilities are 
displayed for the threshold values in (20). The results were 
obtained from 10000 independent simulations. 
Fig. 1 confirms the moderately conservative nature of the 
given reliability recommendations where the desired per-
formance is achieved for 11K ≥  upon satisfying the ine-
quality in (21). This also affirms that the assumptions under-
taken did not have noticeable effect on the accuracy of re-
sults including the normality one. Thus, the proposed tech-
nique here provides nearly 67% saving on the sampling rate 
and 20% reduction on the number of processed samples in 
comparison to uniform sampling. It also gives nearly 20% 
saving on the latter compared to TRS. It is clear that SARS 
with RSG delivers notable savings in terms of the complex-
ity of the sensing procedure, especially in low spectrum oc-
cupancy environment e.g. CR in certain frequency ranges. 
Formulas (22)-(24) allow the user to examine the possible 
benefits of utilizing SARS in a given scenario. For illustra-
tion purposes, Fig. 2 depicts the targeted subband’s ROC if 
the present transmissions were of a BPSK type and 31ˆ 0.5η =  
i.e. the cyclostationarity effect(s) on the estimation accuracy 
is ignored. It is clear from the figure that the detection 
method has failed to deliver the requested probabilities for 

11K = . This demonstrates the impact of the nonstationarity 
of communication signals on SARS and that precautions 
should be taken. If we chose ˆ 1kη =  in (22), we would attain 

15K ≥ which mends the MSS response (see Fig. 2). 
6. CONCLUSIONS 

The proposed SARS with RSG is a reliable spectrum sens-
ing technique that offers substantial savings on the sampling 
rate compared to the uniform-sampling-based ones. It can 
use considerably low sampling rates i.e. ease the stringent 
sampling requirements of the wideband MSS procedure. 
The cyclostationary nature of communication signals is 
shown to cause degradation in the SARS quality and should 
be countered. The provided reliability guidelines, which 
ensure fulfilling the detection probabilities, illustrate the 
trade-offs between the sampling rate and the length of the 

observation window. This paper serves as an impetus and 
prompts further research into DASP-based MSS methods. 
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Fig. 1, Detection probabilities of the targeted subband.  (a) ROC for 
a threshold sweep; asterisk is (0.05,0.96) , (b) min,31 31 max,31γ γ γ≤ ≤ . 

 
Fig. 2, ROC for the BPSK case; asterisk (0.05,0.96) . 
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