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ABSTRACT

The delineation of P and T waves is important for the interpretation

of ECG signals. In this work, we propose a sequential Bayesian

detection-estimation algorithm for simultaneous P and T wave de-

tection, delineation, and waveform estimation on a beat-to-beat ba-

sis. Our method is based on a dynamic model which exploits the

sequential nature of the ECG by introducing a random walk model

to the waveforms. The core of the method is a marginalized par-

ticle filter that efficiently resolves the unknown parameters of the

dynamic model. The proposed algorithm is evaluated on the anno-

tated QT database and compared with state-of-the-art methods. Its

on-line characteristic is ideally suited for real-time ECG monitoring

and arrhythmia analysis.

Index Terms— ECG, P and T wave delineation, sequential

Monte Carlo methods, particle filtering

1. INTRODUCTION

Electrocardiograms (ECGs) are characterized by a recurrent wave

sequence: P wave, QRS complex and T wave1. In ECGs, most of

the clinically useful information can be found in the intervals, ampli-

tudes, or wave morphology. Therefore, the development of efficient

and robust methods for automatic ECG delineation (determination of

peaks and limits of the individual waves) and waveform estimation

has become a very interesting challenge for biomedical engineers.

Among the ECG waves, the QRS complex is relatively easy to detect

because of its high and peaky amplitude and is thus generally used

as a reference within the cardiac cycle. Concerning P and T wave

detection and delineation, most existing methods perform QRS de-

tection first. They then define temporal search intervals before and

after the detected QRS location to search for the P and T waves us-

ing adaptive filtering [1], low-pass differentiation [2] or the wavelet

transform (WT) [3]. Delineation can also be based on the concept of

fitting a realistic model to the ECG and extracting parameters from

the model to determine waveform onsets and offsets. Particular at-

tention has been devoted to Gaussian mixture models whose param-

eters can be estimated with extended Kalman filters (EKFs) [4]. Be-

cause of the low slope and magnitude of the P and T waves, as well

as the presence of noise, interference, and baseline fluctuation, P and

T wave delineation remains a complicated task. Furthermore, in ad-

dition to the determination of wave peaks and limits, the shapes of P

and T waves have also been proved to contain important information

about many kinds of diseases [5].

A Bayesian model was recently introduced in [6] for simultane-

ous P and T wave delineation and waveform estimation. This model

1http://en.wikipedia.org/wiki/File:SinusRhythmLabels.svg

takes into account prior distributions for the unknown parameters

(wave locations and amplitudes as well as waveform coefficients).

These prior distributions are combined with the likelihood of the ob-

served data to obtain the posterior distribution of the unknown pa-

rameters. Several Gibbs-type samplers have been proposed to allevi-

ate the computational complexity of this posterior distribution and to

estimate the model parameters [6, 7]. However, the Bayesian model

introduced in [6] relies on a non-overlapped multiple-beat process-

ing window to estimate the waveforms. More precisely, the wave-

forms of all P and T waves within a multiple-beat processing win-

dow are assumed to be equal, whereas their amplitudes and locations

are allowed to vary from one beat to another. Due to the pseudo-

cyclostationary nature of the ECG signal, the P and T waveforms in

a given beat are usually similar but not exactly equal to those of the

adjacent beats. Therefore, the performance of P and T wave delin-

eation can be expected to improve if the waveforms are estimated in

a beat-to-beat manner that allows for temporal variations of wave-

form morphology across the beats. Moreover, it is typically crucial

to process data on-line, both from the point of view of storage costs

as well as for rapid adaptation to changing signal characteristics.

In this paper, we propose a dynamic model and an associated

particle filter (PF) to solve simultaneously P and T wave delineation

and waveform estimation in a beat-to-beat basis. The proposed dy-

namic model is similar to the Bayesian models introduced in [6, 7].

However, it adapts to the morphology variations across the ECG

beats by assigning a random walk model to the waveform coeffi-

cients. Following the sequential Monte Carlo (SMC) principle [8],

PFs are introduced to estimate the unknown parameters of the pro-

posed model. The key idea is to represent the required posterior den-

sity by a set of random samples with associated weights and to com-

pute parameter estimates from these samples and weights. Despite

the simplicity of the PF principle, its main drawback is its compu-

tational complexity especially for large state dimension. This com-

putational complexity can be reduced for nonlinear dynamic models

containing a subset of parameters which are linear and Gaussian,

conditional upon the other parameters. In this case, the linear param-

eters can be optimally estimated through standard linear Gaussian

filtering. This technique is often referred to as Rao-Blackwellization

[9] or marginalization [10]. In our case, the state equations are linear

with respect to a subset of the unknown parameters. Thus we pro-

pose to use a marginalized particle filter (MPF) that dismisses the

states appearing linearly in the dynamics, generate particles in the

space of the remaining states and run one Kalman filter for each of

these particles to estimate the “linear” parameters. The proposed ap-

proach is evaluated on the annotated QT database [11]. A compari-

son with the window-based Bayesian method in [6] and other classi-

cal methods shows that the proposed sequential model and process-

20th European Signal Processing Conference (EUSIPCO 2012) Bucharest, Romania, August 27 - 31, 2012

© EURASIP, 2012  -  ISSN 2076-1465 479



ing improve the accuracy of estimating the locations, amplitudes,

and shapes of the P and T waves.

The paper is organized as follows. Section 2 describes the

proposed dynamic model for the non-QRS signal components.

Section 3 studies the associated MPF. Simulation results using the

QT database and a comparison with other classical methods are

presented in Section 4. Finally, some conclusions are provided in

Section 5.

2. DYNAMIC MODEL FOR A NON-QRS INTERVAL

Non-QRS intervals in an ECG signal are located between a QRS end

and the subsequent QRS onset. These intervals potentially contain

P and T waves. In this paper, we assume that the locations of the

non-QRS intervals are provided by a preliminary QRS detection step

using the Pan-Tompkins algorithm [12]. The baseline wandering is

removed by a median filtering technique as suggested in [13].

2.1. Signal model

As shown in Fig. 1, the non-QRS interval Jn associated with the nth

heartbeat consists of two complementary subintervals: a T search

interval JT,n, which may contain a T wave, and a P search interval

JP,n, which may contain a P wave. The lengths of the intervals Jn,

JT,n, and JP,n will be denoted by Nn, NT,n, and NP,n, respectively.

Note that NT,n + NP,n = Nn. The interval lengths NT,n and NP,n

can be determined by a cardiologist or simply fixed as given percent-

ages of Nn. In this paper, we choose NT,n = NP,n = Nn/2. Our

goal is to estimate the locations and shapes (waveforms) of the T and

P waves within their respective search intervals JT,n and JP,n.

Similar to the blind deconvolution problem in [6], the sig-

nal yn,k in the nth T wave interval JT,n can be modeled by the

convolution of an unknown binary “indicator sequence” bT,n =
(bT,n,1 · · · bT,n,NT,n

)T indicating the wave locations (bT,n,i = 1 if

there is a wave at location i, bT,n,i = 0 otherwise) with an unknown

T waveform hT,n = (hT,n,−L · · · hT,n,L)
T such that

yn,k =

NT,n∑

j=1

hT,n,k−j bT,n,j + wn,k , k∈JT,n (1)

where wn,k is a white Gaussian noise with variance σ2
w,n and

hT,n,k = 0 for k /∈ {−L, . . . , L}. The waveform length 2L + 1 is

chosen as a fixed percentage of Nn that is large enough to accom-

modate the actual supports of the T wave (e.g., Nn/3 in this work).

The signal model ensures that the position of a nonzero detected

indicator (such that b̂T,n,k = 1) directly indicates the center k=0 of

the waveform support interval {−L, . . . , L}. Note that since there

is at most one T wave in each T wave interval, there will be at most

one nonzero entry of bT,n which corresponds to the T wave location.

Similarly, the P wave within the P wave interval is modeled

by the convolution of hP,n = (hP,n,−L · · · hP,n,L)
T with bP,n =

(bP,n,1 · · · bP,n,NP,n
)T . The P interval signal component yn,k can

then be written as

yn,k =

NP,n∑

j=1

hP,n,k−j bP,n,j + wn,k , k∈JP,n (2)

with hP,n,k = 0 for k /∈{−L, . . . , L}.

Following [7], we represent the T and P waveforms by a basis

expansion using discrete-time versions of Hermite functions. Thus,

the waveform vectors can be written as

hT,n = HαT,n , hP,n = HαP,n (3)
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ĥ
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Fig. 1. Signal model within a non-QRS interval.

where H is a (2L+1) × G matrix whose columns are the first G
Hermite functions (with G ≤ 2L+1), suitably sampled and truncated

to length 2L + 1, αT,n and αP,n are unknown coefficient vectors

of length G. By using these expansions, the number of unknown

parameters can be reduced from 2L + 1 to G for each waveform

(e.g., we have chosen G = 20 and 2L + 1 is around 83 for ECGs

with heart rate around 60 beats per minute and sampled at 250Hz).

Using (3), we obtain the following vector representation of the

T wave interval in (1)

yT,n = BT,nHαT,n +wn (4)

where yT,n = (yn,1 · · · yn,NT,n
)T, BT,n is the (NT,n) × (2L+1)

Toeplitz matrix with first row (bn,L+1 · · · bn,1 0 · · · 0) and first

column (bn,L+1 · · · bn,NT,n
0 · · · 0)T and wn = (wn,1 · · · wn,NT,n

)T

is a Gaussian vector with covariance matrix σ2
wINT,n×NT,n

. Note

that similar vector representation can be obtained for the P wave

interval yP,n = (yn,NT,n+1 · · · yn,Nn)
T.

2.2. Prior distributions and dynamic model

This section describes the prior distributions and the dynamic model

assigned to the unknown parameters. The proposed algorithm suc-

cessively processes the T and P wave intervals within the same non-

QRS component in a fully analogous way. Note that only the T wave

dynamic model is presented in the following and the subscript indi-

cating T wave is omitted for notation convenience.

Due to the parametrization (4), the state parameter vector for the

nth T wave interval (time step n) is given by

xn =
(

b
T
n , α

T
n

)T

. (5)

Concerning the indicator vector bn, since there is no known relation

between the wave locations of each beat, these sets of parameters

bn, bn−1, bn−2, . . . are modeled as a priori mutually independent of

each other. The indicators bn,k contained in bn are subject to a block

constraint: within JT,n, there is one T wave (such that ‖bn‖ = 1)

or none (with ‖bn‖ = 0). Therefore, we define the prior of bn as a

discrete distribution on the set
{

β0, . . . ,βj , . . . ,βNT,n

}

where βj

is a NT,n × 1 vector whose j-th entry is 1 and all remaining entries

are zero (β0 is an all zero vector which represents the case where
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there is no T wave). The prior of bn can then be defined as

Pr
(
bn = βj

)
=

1

NT,n + 1
, j∈{1, . . . , NT,n} . (6)

Since the ECG waveforms are usually similar for two consecu-

tive beats, we propose to assign a random walk prior to the T wave-

form coefficient vector α

αn = αn−1 + vn−1 (7)

where αn−1 denotes the T waveform estimates of the (n − 1)th
beat and vn−1 is an additive Gaussian white noise vector denoted

as vn−1 ∼ N
(
0, σ2

αIG

)
, where IG is the G × G identity matrix.

The variance σ2
α determines how fast the waveform coefficients are

expected to change with time. Initialization is done by setting ĥ0 =
Hα̂0 equal to a Hanning window (see details in Section 4).

The T wave delineation and waveform estimation problem con-

sists of estimating recursively the wave location bn and the wave-

form coefficients αn from the measurements yn defined in (4).

3. A MARGINALIZED PARTICLE FILTER

Our goal is to estimate jointly the discrete-valued indicator vector

bn and the waveform vectors αn i.e., estimate the state vector xn.

In a Bayesian framework, all inference is based on the posterior dis-

tribution of the unknown parameters given the set of available obser-

vations, expressed as p (x0:n|y1:n) with x0:n = (x0, . . . ,xn). PFs

are a class of methods well-suited to perform the estimation of the

hybrid state vector x0:n. They approximate the target distribution by

an empirical distribution

p̂ (x0:n|y1:n) =

Ns∑

i=1

wi
nδ

(

x0:n − x
i
0:n

)

,

Ns∑

i=1

wi
n = 1 (8)

where δ is the Dirac delta function. The weights wi
n and the particles

xi
0:n are classically obtained by sequential importance sampling and

a selection step to prevent degeneracy [8].

While the classical PFs are fairly easy to implement, a main

drawback is that the required particle number increases quickly with

the state dimension. The MPF can reduce the number of parame-

ters estimated by the particle filtering and therefore allows one to

use fewer particles. More specifically, when there is a linear Gaus-

sian sub-structure in the state parameters xn, state estimates can be

obtained by exploiting this structure. The key idea is to split xn as

follows

xn =
[

(xL
n)

T , (xNL
n )T

]T

(9)

where xL
n denotes the state parameters with conditionally linear dy-

namic and xNL
n denotes the nonlinear state parameters. Using Bayes’

theorem we can then marginalize out the linear state parameters and

estimate them using the Kalman filter (KF), which is the optimal

filter for this case. The nonlinear state variables are then estimated

using a PF. Note that one KF is then associated with each particle.

It can be observed from (4) that both the discrete parameter vec-

tor bn and the continuous parameter vector αn are conditionally

linear sub-structures with respect to the observation yn. Since only

the continuous parameters can be handled by the Kalman filtering,

we choose xL
n = αn and xNL

n = bn. Thus αn can be handled

by the Kalman filter. Analytically marginalizing out the linear state

variables from p (x0:n|y1:n) and using Bayes’ theorem yields

p(b0:n,αn|y1:n) = p(αn|b0:n,y1:n)
︸ ︷︷ ︸

Optimal KF

p(b0:n|y1:n)
︸ ︷︷ ︸

PF

(10)

The MPF recursions are summarized in Algorithm 1. The dif-

ferent steps involved in this algorithm are detailed in the rest of this

section. Note that Ns is the number of particles.

Algorithm 1 Marginalized particle filter

{Initialization}
for particles i = 1, . . . , Ns do

Set bi0 = 0Nn×1, αi
0 = H−1ĥ0, P i

0 = 0G×G, wi
0 = 1.

end for

{Iterations}
for n = 1, 2, . . . , do

for particles i = 1, . . . , Ns do

{Kalman filter and Particle filter propagation}

Kalman filter prediction for αi
n (see (11))

Sample bin ∼ Pr(bn = βj |b
i
0:n−1,y1:n) (see (12))

Kalman filter correction for αi
n (see (13))

Evaluate weights

wi
n = wi

n−1

∑

j∈JT,n

p(yn|b
i
n = βj ,y1:n−1)p(b

i
n = βj)

end for

{Weight normalization}
for particles i = 1, . . . , Ns do

wi
n = wi

n/
∑Ns

i=1
wi

n

end for

{ State estimation}
Estimation of bn and αn (see (14) )

{Particle resampling}

Calculate N̂eff = 1/
∑Ns

i=1

(
wi

n

)2

if N̂eff ≤ 0.7Ns then

Resample using systematic sampling scheme

end if

end for

Kalman filter prediction. By using (7), the prediction step in the

Kalman filter can be written as follows

α
i
n|n−1 = α

i
n−1, P i

n|n−1 = P i
n−1 +Q (11)

where αi
n|n−1 = E

[
αn|y1:n−1, b

i
0:n−1

]
, Q = σ2

αI2L+1 and

P i
n|n−1 = Cov

[
αn|y1:n−1, b

i
0:n−1

]
. Note that the predicted state

vector and its covariance computed by the KF are directly used to

propagate the particles and compute their importance weights.

Proposal distribution for the indicators. It is well-known that the

choice of the importance distribution is a critical issue to design ef-

ficient PF algorithms. To generate samples in interesting regions of

the state space, i.e., corresponding to a high likelihood p(yn|xn), a

natural strategy consists of taking into account information from the

most recent observations yn. The optimal importance distribution

in the sense that it minimizes the variance of the importance weights

is q(xn|x
i
0:n−1,y0:n) = p(xn|x

i
0:n−1,yn) [14]. By inserting the

Kalman filter prediction of (11), the optimal proposal distribution for

bT,n can be written as

Pr(bn = βj |b
i
0:n−1,y1:n) ∝ N

(

ỹ
i
n,j , S̃

i
n,j

)

(12)

with

ỹ
i
n,j = Bn,jHα

i
n|n−1

S̃i
n,j = Bn,jP

i
n|n−1B

T
n,j +R
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where Bn,j is the NT,n × (2L+1) Toeplitz matrix with first row

(bn,L+1 · · · bn,1 0 · · · 0) and first column (bn,L+1 · · · bn,NT,n
0

· · · 0)T which corresponds to bn = βj , and R = σ2
wINT,n

.

Kalman filter correction. After receiving the observation at time

step n, the waveform coefficients can be updated for each generated

wave indicator particle bin . The Kalman filter correction procedure

can be written as

Si
n = B

i
nP

i
n|n−1

(

B
i
n

)T

+R

K = P i
n|n−1

(

B
i
n

)T (

Si
n

)−1

α
i
n = α

i
n|n−1 +H

−1K(yn −B
i
nHα

i
n|n−1)

P i
n = (I −KB

i
n)P

i
n|n−1 (13)

where Bi
n is the Toeplitz matrix (NT,n+L)×(L+1) corresponding

to the wave indicator particle vector bin.

State estimation. The sample-based blockwise MAP detector is

used for estimating the binary sequence bn, while for the waveform

coefficients αn, a smooth state estimation is applied

b̂n = argmax
bin∈{0,1}

NT,n

p̂(bin|y1:n,α0:n−1), α̂n =

Ns∑

i=1

α
i
nw

i
n. (14)

The wave delineation consists of determining the peak and bound-

aries of the detected T and P waves. As mentioned previously, the

wave indicator estimated by the MPF directly indicates the middle

of the alloted waveform time window. Thus, the peak of the re-

spective T or P wave can be obtained by shifting the indicator to the

maximum position of the estimated waveform. Concerning the wave

boundaries, since the estimated waveforms carry information about

the wave morphology, they can be located by using the delineation

criterion based on the waveform estimate as in [6, 7].

4. SIMULATION RESULTS

We evaluated the performance of the proposed algorithm on the QT

database (QTDB) [11]. The QTDB contains 105 excerpts of Holter

recordings from several widely used ECG databases, chosen to in-

clude a variety of P and T wave morphologies. The fixed hyperpa-

rameters involved in the prior distributions were chosen as σ2
α =

0.01 and σ2
w = 0.1. These values allow for an appropriate wave-

form variability from one beat to another. Note that the non-QRS

components are normalized by using the corresponding R peak val-

ues to handle different amplitude resolutions. The waveform vector

ĥ0 = Hα̂0 was initialized with a 2L + 1 Hanning window whose

amplitude was half the R peak. We have chosen Ns = 200 particles

for all the following simulations.

Fig. 2 shows qualitative comparisons of the proposed MPF

method with the Gaussian mixture model and extended Kalman

filter (EKF) method of [4] and with the recently proposed multiple-

beat Bayesian model and partially collapsed Gibbs sampler (PCGS)

method of [6]. To evaluate the three methods under real physiolog-

ical noise conditions, we have added electrode motion (EM) noise

from the MIT-BIH noise stress test database. Fig. 2(a)(1) shows a

segment of QTDB sele0136. Fig. 2(a)(2) shows the same segment

corrupted by EM noise with a signal-to-noise ratio (SNR) of 10dB.

The estimated non-QRS signal component obtained from the noisy

signal by the three methods are depicted in Fig. 2(a)(3), Fig. 2(a)(4)

and Fig. 2(a)(5). The original (noise-free) ECG signal is also shown

7 7.5 8 8.5 9 9.5

original ECG signal: sele1036

7 7.5 8 8.5 9 9.5

observation including EM noise

7 7.5 8 8.5 9 9.5

estimated non−QRS intervals by using EKF method [4]

7 7.5 8 8.5 9 9.5

estimated non−QRS signal components by using window−based processing [6]

7 7.5 8 8.5 9 9.5

estimated non−QRS signal components by using beat−to−beat MPF (proposed)

time (s)

(1)

(2)

(3)

(4)

(5)

(a) QTDB-sele0136

15 15.5 16 16.5 17

original ECG signal: sel803

15 15.5 16 16.5 17

observation including EM noise

15 15.5 16 16.5 17

estimated non−QRS intervals by using EKF method [4]

15 15.5 16 16.5 17

estimated non−QRS signal components by using window−based processing [6]

15 15.5 16 16.5 17

estimated non−QRS signal components by using beat−to−beat MPF (proposed)

time (s)

(1)

(3)

(2)

(4)

(5)

(b) QTDB-sel803

Fig. 2. Results of processing ECG datasets (a) “sele0136” and (b)

“sel803”. Captions for each subfigure: (1) Clean segment from

QTDB; (2) noisy version including EM noise with SNR = 10dB; (3)

non-QRS signal component estimated by the EKF method of [4]

(red) and original signal (blue); (4) non-QRS signal component esti-

mated by the window-based Bayesian method of [6] (red) and orig-

inal signal (blue); (5) non-QRS signal component estimated by the

proposed beat-to-beat MPF method (red) and original signal (blue).
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for comparison. It can be seen that the proposed MPF method pro-

vides the closest agreement with the original ECG signal, especially

at the onsets and ends of the waves, which is a desirable property for

wave delineation. Fig. 2(b) shows analogous results for a segment of

sel803 that contains premature ventricular contractions (a pathology

which has parts of the T waves crossing the interval border and

the P waves missing). For the proposed MPF method, this can be

handled by including in the T wave interval observations yT the first

L samples of the following P wave interval, where L is the half of

the alloted waveform length. This allows a complete T waveform

estimation in case the wave indicator locates at the last sample of

JT. Since one non-QRS interval is processed sequentially from a

T wave interval to a P wave interval, the estimated T wave portion

within the overlapped part can be extracted. Again, it can be seen

that the estimates obtained with the proposed method are better than

those obtained with the other two methods.

An important issue of PF methods is the number of particles.

Table 1 shows the normalized mean square error (NMSE) of esti-

mated non-QRS components versus the number of particles Ns. As

can be seen, benefiting from the optimal importance distribution in-

troduced in Section 3, good estimation performance can be obtained

with a moderate number of particles. Note that for the proposed

method using 200 particles, the processing time per beat is approx-

imately 0.5s for a nonoptimized MATLAB implementation running

on a 3.0-GHz Pentium IV computer, compared to about 2s for the

method of [6].

For a quantitative analysis, Table 2 presents the means (µ) and

standard deviations (σ) of the differences between the automated de-

lineation results and the manual annotations, for the proposed al-

gorithm and for two alternative methods: the PCGS method of [6]

and the wavelet transform (WT) method of [3]. It is seen that the

proposed algorithm outperforms the other methods in terms of both

detection sensitivity2 and delineation accuracy.

Table 1. Normalized mean square error (NMSE) versus number of particles

Ns 10 50 100 200 300

NMSE −25dB −31dB −34dB −40dB −42dB

Table 2. Delineation and detection performance for QTDB

Parameter Proposed alg. PCGS [6] WT [3]

bP: Se (%) 99.45 98.93 98.87

Onset-P: µ±σ (ms) 3.1±8.3 3.7±17.3 2.0±14.8

Peak-P: µ±σ (ms) 1.2±5.3 4.1±8.6 3.6±13.2

End-P: µ±σ (ms) 2.7±9.8 −3.1±15.1 1.9±12.8

bT: Se (%) 100 99.81 99.77

Onset-T: µ±σ (ms) 6.5±16.3 7.1±18.5 N/A

Peak-T: µ±σ (ms) −0.4±4.8 1.3±10.5 0.2±13.9

End-T: µ±σ (ms) −3.8±14.2 4.3±20.8 −1.6±18.1

5. CONCLUSION

We introduced a sequential Bayesian method performing joint P and

T wave delineation and waveform estimation on a beat-to-beat ba-

sis. Following the sequential Monte Carlo analysis principle, the

sequential yet pseudo-cyclostationary nature of the ECG signal has

2The sensitivity (also referred to as detection rate) is defined as Se ,

NTP/(NTP +NFN), where NTP is the number of true positive detections and
NFN is the number of false negative detections [3].

been exploited by using a dynamic model under the Bayesian frame-

work. A marginalized particle filter has been proposed to efficiently

resolve the unknown parameters of the dynamic model. The pro-

posed method was validated using the entire annotated QT database.

This validation demonstrated reliable detection and accurate delin-

eation for a wide variety of wave morphologies. A comparison with

the window-based Gibbs sampling method of [6] and other state-of-

the-art methods demonstrated significant improvements regarding T

and P wave detection rate, positive predictivity, and delineation ac-

curacy. Further advantage of this method includes the possibility

of analyzing the beat-to-beat variation and evolution of the T and P

waveforms. Thus it is ideally suited for real-time ECG monitoring

and for on-line arrhythmia analysis. Future work includes the con-

sideration of the local ECG baseline variations within each beat by

using a polynomial model as in [7].
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