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ABSTRACT

Accurate and reliable time delay estimation methods play a

key role in multiple receiver synthetic aperture systems to

obtain precise motion error estimates required for the recon-

struction of high-resolution imagery. Moreover, time delay

estimates have a direct impact on the accuracy of height

estimation in bathymetry. For both types of applications,

it is crucial to estimate time delays with subsample preci-

sion, however, bathymetry additionally necessitates the use

of small sample sizes to avoid detail loss in estimating height

information of the sea bottom. We show for linear frequency

modulated signals that time delay estimation based on adap-

tive filtering can be applied to obtain more accurate estimates

of translational displacements in motion compensation tech-

niques as well as of height estimates in bathymetry.

Index Terms— time delay estimation, synthetic aperture

sonar, bathymetry, micronavigation

1. INTRODUCTION

The formation of high-resolution Synthetic Aperture Sonar

(SAS) images requires precise position information of sen-

sors over the entire synthetic aperture in order to coherently

combine the reverberated signals [1]. Due to a lack of ex-

ternal reference, e.g. GPS as commonly used in Synthetic

Aperture Radar (SAR), inertial navigation systems (INS) are

solely used for autonomous underwater vehicles (AUVs).

The sonar of such AUVs typically consists of an array

of hydrophone receivers, which increases the system’s cov-

erage rate while maintaining spatial sampling requirements.

Moreover, it allows using redundant phase center information

for compensating inaccurate position information. This tech-

nique known as the Displaced Phase Center Antenna (DPCA)

exploits the temporal and spatial coherence of sea bottom re-

verberation to estimate time delays of redundant phase centers

and relates them to translational and rotational displacements

of successive pings [2]. Due to the geometrical relation be-

tween the imaging platform and the scene of interest, the time
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delay difference of redundant phase centers is range-variant.

A similar geometry is found in bathymetry [3] with the differ-

ence that the displacements of receivers are known in order to

extract height information.

Traditional time delay estimation (TDE) methods based

on the generalized cross-correlation (GCC) function [4] are

only applicable for jointly stationary signals. As a conse-

quence, the reverberated signals have to be segmented into

short-time windows to account for the time-variant delays by

assuming quasi stationarity for each segment. Thus, there is

a trade-off between the accuracy of the estimate and the com-

pliance with the stationarity assumption. Contrarily, adap-

tive time delay estimation methods are able to cope with this

shortcoming of traditional methods.

The contribution of this paper is the application of an

adaptive filtering approach known as explicit time delay es-

timation (ETDE) [5] in the context of non-stationary time de-

lay difference estimation in SAS processing. This allows for

better displacement and height profile estimation for motion

compensation and bathymetry, respectively. Based on syn-

thetic data, we show that the use of adaptive filters for sub-

sample time delay estimation is more appropriate compared

to traditional cross-correlation techniques.

The remainder of the paper is organized as follows: In

Section 2, we introduce the data model of echo signals and

illustrate that the time delay difference between redundant

phase centers is non-stationary. Section 3 provides a de-

scription of traditional subsample TDE methods based on

the GCC. In Section 4 the TDE approach using adaptive fil-

ters is outlined. Section 5 links the time delay difference to

displacement and height estimates for motion compensation

and bathymetry, respectively. Finally, Section 6 shows the

performance gain using adaptive filters for TDE.

2. PROBLEM FORMULATION

Consider a one-target scenario where the echo signalXi[n] of
an ith transceiver sampled at a rate Ts is given by

Xi[n] = s [n−Di,1] +Wi [n] , n = 0, . . . , N − 1 (1)
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with s [n−Di,1] representing the delayed version of the

transmitted signal s[n] and where Wi[n] is a stationary zero-

mean white Gaussian noise signal. The round-trip delay

Di,1 is related to the distance between the single target lo-

cated at position v1 = [x1, 0]
T and a transceiver at location

ui = [xi, zi]
T . It can be written as

Di,1 =
2Ri,1

cTs
with Ri,1 = ‖v1 − ui‖2 (2)

where c is the speed of propagation, e.g. of sound in water.

Now, let us consider a scenario as depicted in Fig. 1, show-

ing the geometrical relation between two transceivers located

at positions ui with i = 1, 2. In both applications, motion

compensation and bathymetry, one is interested in the time

delay difference∆τ = 2 (R1,1 − R1,2) /c. Note that there is
no time dependence on the time delay difference for a single

target scenario.

However, assuming M targets as a model of the sea-

bottom, located at vm = [xm, 0]T withm = 1, . . . ,M yields

a time delay difference of

∆τ(n) = 2/c ·∆R(m)|m=g(n)

with ∆R(m) = R1,m −R2,m

= ‖vm − u1‖2 − ‖vm − u2‖2. (3)

Note that for a multiple target scenario the time delay dif-

ference ∆τ(n) depends on the discrete time-index n in the

slant-range dimension and is linked to the ground-range in-

dex m via the non-linear geometry mapping function g(·).
Thus, both problems, motion compensation and bathymetry,

can be cast into an estimation problem of time-varying time

delay differences. For the remainder, we assume the subse-

u1

u2

x

z

z0

∆x

∆z

R2,m

R1,m

xm−1 xm xm+1

Fig. 1. Scenario of transceiver and phase center geometry.

quent signal model to ease notation on the subscripts:

X [n] = s[n−D1(n)] +W1[n]

Y [n] = s[n−D2(n)] +W2[n]. (4)

Assuming that the transmitted signal s[n] as well as the noise
processesWi[n] with i = 1, 2 are wide-sense stationary with

zero-mean and mutually uncorrelated, the auto-covariance

function of the echo signal is given by

cXX(κ) = E {X [n+ κ]X [n]∗}

= css(κ− (D1(n+ κ)−D1(n))). (5)

While (2) demonstrates that the sampling rate Ts limits

the accuracy of the time delay estimates and makes it neces-

sary to apply estimation techniques with subsample precision,

(5) clarifies that the echo signals are not stationary due to the

nonlinear mapping between ground and slant-range. This re-

quires short-time windowing of the echo signals to be able to

apply traditional cross-correlation techniques and simultane-

ously motivates the application of adaptive filtering.

To complete the data model, we introduce the transmitted

signal s[n], which will be used later in Section 6. It is a linear-
frequency modulated (LFM) or chirp signal, which is mostly

used in sonar and radar imaging and is expressed as

s[n] = exp{jπαn2} · exp{jωcn} · a[n]

with a[n] =

{

1 −Np/2 ≤ n ≤ Np/2− 1

0 elsewhere
(6)

where α = B/Np is the chirp rate with bandwidth B, Np is

the pulse length in samples and ωc the carrier frequency.

3. GENERALIZED CROSS-CORRELATION

TECHNIQUES FOR TIME DELAY ESTIMATION

Traditional techniques for time delay estimation are based on

the generalized cross-correlation (GCC), which differs from

a standard cross-correlation by introducing pre-filters. De-

pending on the kind of pre-filter, they either enhance or at-

tenuate frequency bands according to the signal-to-noise ratio

of these bands or pre-whiten the input signals. Various types

of pre-filters have been suggested, e.g. the smoothed coher-

ence transform (SCOT), the phase transform (PHAT) and the

weighting functions of the maximum likelihood (ML) esti-

mator [4]. All pre-filters have in common that they require

knowledge of the cross spectrum or the magnitude squared

coherence of the received echoes, which are typically un-

known in practice and consequently need to be estimated from

finite data length.

Due to the time-variant delays, the echo signals in (4)

have to be segmented using a short-time window. Assum-

ing a window size of Ñ samples for which both delays are

considered to be constant, the echoes of the lth segment with

l = 1, . . . , ⌊N/Ñ⌋ can be expressed as

X [ñ, l] = X [ñ+ (l − 1) · Ñ ] , ñ = 0, . . . , Ñ − 1. (7)

An estimate of the GCC function of the lth segment is then

given by

ĉXY (κ; l) =

Ñ−1
∑

ν=0

Ψ̂(ejων )ĈXY (e
jων ; l)ejωνκ (8)

where Ψ̂(ejων ) is an estimate of the frequency response

of the pre-filter, ĈXY (e
jων ) of the cross-spectrum and

ων = 2πν/Ñ is the discrete frequency. Without pre-filters,
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i.e. Ψ̂(ejων ) = 1, one obtains the estimate of the standard

cross-correlation function as

ĉXY (κ; l) = ĉss

(

κ−∆D(l)
s ; l

)

(9)

where ∆D
(l)
s = [∆τ (l)/Ts], with [·] being the rounding op-

erator, is the discrete time delay difference of the lth segment

and can be estimated by

∆τ̂ (l)s = Ts ·∆D̂(l)
s = Ts · argmax

κ
|ĉXY (κ; l)| (10)

since css(0) ≥ css(κ) for κ > 0. Note that ∆τ (l) can only

be estimated up to sample precision using this approach. In

the following two subsections, we list extensions to the cross-

correlation method to obtain subsample precision of the time

delay estimates. For the sake of readability, the segment no-

tation will be omitted.

3.1. Sub-sample TDE using Parabolic Peak Interpolation

A wide spread technique due to its simplicity is a parabolic

peak interpolation of the cross-correlation function [6] by de-

termining the location of the extremum, κmax = −a1/(2a2),
of the parabola

y(κ) = a0 + a1κ+ a2κ
2. (11)

Its coefficients can be determined by solving the linear equa-

tion system consisting of the values of the maximum of the

sample covariance function, i.e. ĉXY (κs) for κs = ∆D̂s, and

its direct neighbors. Plugging the coefficients into (11) yields

the subsample estimate of the time delay difference as

τ̂p = ∆τ̂s +
Ts · (cXY (κs − 1)− cXY (κs + 1))

2cXY (κs − 1)− 4cXY (κs) + 2cXY (κs + 1)
.

(12)

3.2. Sub-sample TDE using Phase Information

Apart from fitting a parabola to the cross-correlation peak us-

ing only magnitude information, one can exploit phase infor-

mation to obtain a subsample time delay difference estimate.

After down conversion, the complex baseband signal is given

by

X̃[n] = (s [n−D1] +W1[n]) · exp{−jωcn}

= s̃ [n−D1] exp {−jωcD1}+ W̃1[n]. (13)

where s̃[n] and W̃1[n] denote the baseband versions of the

transmitted and additive noise signal, respectively. Substitut-

ing (13) into (9) yields the cross-correlation function in the

baseband as

cX̃Ỹ (κ) = cs̃s̃ (κ−∆Ds) · exp {−jωc∆τ/Ts} . (14)

As can be seen from (14) the time delay difference ∆τ is

also contained in the phase information of the complex cross-

correlation function, which can be exploited to obtain a sub-

sample estimate

∆τ̂f = −
θ

Ωc
+

λf

fc
(15)

with θ = ∠ (cX̃Ỹ (κ)), Ωc = 2πfc and λf ∈ Z represents

the ambiguity number due to modulo 2π phase wraps. This

ambiguity is solved by minimizing the magnitude difference

between the sample and subsample precision delays, given by

λf = argmin
λ

|∆τ̂s −∆τ̂f (λ)| , λ ∈ Z.

We refer to this method as the fine time delay estimation tech-

nique.

4. EXPLICIT TIME DELAY ESTIMATION

A completely different approach for time delay estimation is

based on adaptive filtering and has been presented in [5], [7].

In contrast to the previous methods, adaptive filters have the

advantage of avoiding the need for spectral estimation from

finite data segments. Moreover, they provide tracking capa-

bilities of the delays, which is highly desirable for both appli-

cations of interest. These benefits motivate the use of adaptive

filters in the context of motion compensation and bathymetry.

In the sequel, we briefly review the concept of explicit time

delay estimation by means of adaptive filtering [7].

The principle idea for applying an adaptive filter for time

delay estimation is depicted in Fig. 2. The impulse response

h[n,∆D(n)] is parametrized by the desired subsample time

delay difference ∆D(n) = ∆τ(n)/Ts in order to time shift

the input signal X [n] and therefore to approximate the refer-

ence signal Y [n]. The corresponding time delay difference

∆D(n) is found adaptively by minimizing the square error

ǫ[n,∆D(n)]2 between input and reference signal.

h[n,∆D(n)]
X [n] Y [n]

ǫ[n,∆D(n)]

Fig. 2. Block diagram of explicit time delay estimation

(ETDE) technique using an adaptive filter [5].

Let us for simplicity assume that there are no additive

noise sources in (4), i.e. Wi[n] ≡ 0 for i = 1, 2. Then,

based on the ideal interpolation, the echo signal of the second

receiver can be expressed as

Y [n] = s[n−D2(n)] =
∞
∑

l=−∞

h[l,∆D(n)]X [n− l] (16)
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where the impulse response is given by h[n,∆D(n)] =
sinc[n −∆D(n)]. However, in practice the received signals

are superimposed by noise, i.e. Wi[n] for i = 1, 2 exists,

and moreover the impulse response h[n,∆D(n)] has to be

realized by a finite impulse response (FIR) filter of order P .

Consequently, only an estimate of ∆D(n) and therefore of

Y [n] is available, which results in an error term denoted by

ǫ[n,∆D̂(n)] = Y [n]− Ŷ [n]

= Y [n]−

P/2
∑

l=−P/2

h[l,∆D̂(n)]X [n− l]. (17)

Minimizing ǫ[n,∆D̂(n)]2 with respect to the time delay dif-

ference∆D̂(n) using the steepest descent approach given by

∆D̂(n+ 1) = D̂(n)−
µ

2

δ

δ∆D̂(n)
ǫ[n,∆D̂(n)]2 (18)

leads to the explicit time delay estimation (ETDE) technique:

∆D̂(n+ 1) = D̂(n)− µǫ[n,∆D̂(n)] · X̃ [n] (19)

with X̃[n] =

P/2
∑

l=−P/2

g[l,∆D̂(n)]X [n− l].

Here, g[n,∆D̂(n)] denotes the derivative of the impulse re-

sponse h[n,∆D̂(n)] with respect to∆D̂(n) and µ is the step

size of the steepest descent method.

5. MOTION COMPENSATION AND BATHYMETRY

This section briefly outlines the basic concepts of motion

compensation and bathymetry based on the obtained time

delay estimates and will be used in Section 6 to assess the

performance of the time delay estimation techniques. Due

to inaccurate position information of navigation systems,

it is essential in SAS to correct unknown ping-to-ping dis-

placements by exploiting redundant information provided by

overlapping phase center pairs, e.g. as shown at positions u1

and u2 in Fig. 1, which are displaced by θ = [∆x,∆z]T but

have the same along-track position.

Using a non-linear least-squares approach [8], it is fea-

sible to estimate these displacements, assuming a flat sea-

bottom, by minimizing

Λ(m, θ)2 =
1

2

∣

∣

∣
∆R̂(m, θ)−∆R(m, θ)

∣

∣

∣

2

(20)

using the Gauss-Raphsonmethodwhere∆R(m, θ) ≡ ∆R(m)
as stated in (3) and ∆R̂(m, θ) are the scaled time delay

difference estimates. The recursive rule to determine the

displacement estimates is then given by

θ(k + 1) = θ(k)−
(

J
T
J + S

)

−1

· JΛ

with S =

M
∑

m=1

Λ(m, θ)H , (21)

where J and H represent the Jacobian and Hessian matrix,

respectively, and Λ is a vectorized representation of Λ(m, θ)
form = 1, . . . ,M .

The scenario of Fig. 1 can also be applied to bathymetry

after replacing the transmitter and receivers by their respec-

tive phase centers at positions u1 and u2. In contrast to mo-

tion compensation, in bathymetry the displacements θ are

known but the height profile zh(r) of the sea bottom is not.

Using the geometric relations, one can determine the height

of a scatterer in slant-range r using u1 as a reference point by

zh(r) = z0 − r
[

√

1− a2 cos(ξ)− a sin(ξ)
]

with a =
[r +∆R(r)]2 − r2 − d2

2rd
, (22)

where d = ‖θ‖2 and ξ = tan−1(∆z/∆x). Note that in prac-
tice a combination of bathymetry with motion compensation

may significantly improve the ping-to-ping displacement es-

timates by overcoming the implicit assumption of a flat sea

bottom when compensating motion errors.

6. SIMULATION RESULTS

In order to assess the performance of different time delay es-

timation techniques,M = 500Monte Carlo simulations have

been evaluated using the parameters listed in Table 1. Exem-

plary results of range difference estimates used for motion

compensation and height profile estimation are depicted in

Fig. 3 and 4, respectively. In both cases, the phase centers

have been displaced by ∆x = 2 cm and ∆z = −2 cm. It is

observable from Fig. 3 that the maximum likelihood GCC

method performs worse than the standard cross-correlation

method combined with phase information for subsample pre-

cision and using the pulse compressed echo data. As a conse-

quence, we focus on the latter and the adaptive filter approach,

which already shows superior performance in both examples.

Note that the parabolic peak interpolation technique is used

implicitly in the fine time delay method but has shown poor

performance if used for subsample estimation by itself.

PARAMETER VARIABLE VALUE

Sampling Frequency fs 80 kHz
Carrier Frequency fc 20 kHz
Bandwidth B 4 kHz
Pulse Length Tp 5 ms

Table 1. Simulation Parameters

The results of the Monte Carlo simulations are depicted

in Fig. 5 and 6 for estimating the displacements in case of

motion compensation as well as for height profile estimation.

While the adaptive filter approach is superior to the cross-

correlation technique for displacement estimation, it only

shows an improved performance for SNR values larger than

5dB in case of height profile estimation.

2296



25 35 45 55 65

2.15

2.25

2.35

2.45

 

 

slant range r [m]

ra
n
g
e
d
if
fe
re
n
ce

∆
R

[c
m
] ∆Rtrue

∆R̂AF
∆R̂ML
∆R̂CF

Fig. 3. Range difference estimation example for different

time delay estimation methods, i.e. adaptive filter (AF), max-

imum likelihood GCC (ML) and standard cross-correlation

with pulse compressed echoes (CF), for a SNR = 10dB .
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Fig. 4. Height profile estimation for the adaptive filter ap-

proach (AF) and the fine time delay estimation technique (CF)

for a SNR = 15dB.

7. CONCLUSION

We compared the classical cross-correlation techniques for

time delay estimation with an adaptive filter approach in the

context of motion compensation for synthetic aperture sonar

high-resolution imaging as well as for bathymetry. Simula-

tion results demonstrate that the adaptive filter approach out-

performs the subsample cross-correlation technique for dis-

placement estimation, especially for high signal-to-noise ra-

tios. In case of height profile estimation the performance gain

depends on the SNR. For future work, a validation on real

sonar data is required to prove the performance gain of the

explicit time delay estimation technique.
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