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ABSTRACT

With the widespread interest in 3D technology areas such as
displays, cameras, and processing, the 3D video is becoming
widely available. Due to correlation between views in mul-
tiview 3D video at the same temporal location, it is possible
to perform video processing operations more efficiently com-
paring to regular 2D video. In order to improve denoising
performance for multiview video, we propose an algorithm
based on denoising in 3D DCT domain, which is competitive
in performance with state-of-art denoising algorithms and it
is suitable for real-time implementation. The proposed algo-
rithm searches for corresponding image patches in temporal
and inter-view directions, selects 8 patches with lowest dis-
similarity measure, and performs denoising in 3D DCT do-
main. The novel inter-view image patch search method brings
up to 1.62dB gain in terms of average luma Peak Signal-to-
Noise Ratio (PSNR), with average gain 0.6 - 0.8 dB depend-
ing on the amount of noise present in test sequences.

Index Terms— multiview, denoising, 3D, DCT, video

1. INTRODUCTION

Advances in 3D video display and coding, build motivation
for capture of high quality 3D video. 3D video comprises at
least two views, depicting the same scene from different view
points. Displays which are able to reproduce more than two
views are already available on the market. At least two types
of multiview autostereoscopic displays (ASDs) are available.
They can render 9 or 28 views. In practice, that large number
of views cannot be transmitted. It is possible to transmit less
views and synthesize the missing ones on the receiver side.
In order to encode large number of views, the standardization
process of the 3D video coding was initiated by the Call for
Proposals at the beginning of 2011 [1]. These conditions cre-
ate a demand for video processing techniques, which can be
used alternatively to 2D video processing methods, and which
can bring more gain when 3D video is taken into account.

The capture of multiview video is realized using standard
video cameras, bundled into the multiview acquisition sys-
tem. Similarly to 2D video, multiview video acquisition pro-
cess shares the problem of image noise arising from many

sources, mainly, shot noise, dark current noise, fixed pattern
noise, amplifier noise, and quantization noise. The presence
of noise, not only can degrade perceptual video quality itself,
but can significantly affect 2D video processing techniques
such as segmentation, object recognition, indexing. In case
of 3D video, processing techniques like depth estimation pro-
cess, based on stereo matching [2], or 3D reconstruction [3]
are affected by noise.

There is a broad range of methods for image and video
denoising. Recent state-of-art image denoising methods are
described in [4] and [5]. Natural extension to image denois-
ing is video denoising, where in addition to spatial correla-
tions, the temporal ones can be taken into account. Several
state-of-art approaches were introduced over the last decade
including [6, 7, 8]. Among those, [6] is highly computation-
ally optimized and suitable for parallel implementation.

Currently, there exist two approaches to multiple view
image denoising. In [9] the problem of imaging with small
aperture and short exposure is solved as a denoising prob-
lem. Corresponding image patches are found based on a
new dissimilarity measure, which takes into account a set
of image patches in a reference view, and patches in other
views, corresponding to the reference set of patches. Selected
patches with similar underlying image structure are denoised
using two different methods, Principle Component Analysis
(PCA) and tensor analysis. The strengths of this algorithm are
using depth map, to get more accurate match, and accurate
joint multiview image patch matching. Unfortunately, the
computation cost of image patch matching, depth estimation,
and methods used for decorrelation is very high, making this
method not suitable for real-time application. Different ap-
proach, without using depth map, is presented in [10]. As the
first step, the images are denoised using BM3D [5] algorithm.
After that, the patch-based multi-view stereo (PMVS) [11]
model reconstruction algorithm is used to identify feature
points, which are projected to other views. These feature
points serve as patch centers for image patches, collected
for denoising. To calculate the similarity between patches,
the graph of surface patches is created. The dissimilarity
measure is the geodesic distance calculated between every
pair of patches in the graph. The patches with the smallest
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dissimilarity measure are selected for Wiener filtering.
Unfortunately, not much attention has been put to 3D

video denoising, in case of which, image patches from tem-
porally synchronized views can significantly contribute to
denoising. 3D video denoising is different from multi image
and 2D video denoising, since it contains both temporal re-
dundancy and inter-view correlations. Thus, it needs different
approach than the ones presented before. In this publication,
we propose to extend the framework of video denoising in
sliding window 3D DCT domain [6] to a multiview case.
In addition to temporal direction, an inter-view direction is
exploited. Bidirectional block-based motion search selects 8
image patches to create a 3D block volume. On this volume,
a sliding window filtering is performed. At single step of the
sliding window procedure, a block volume of size 8x8x8 is
extracted from the 3D volume, transformed using 3D DCT
transform, hard-thresholded, and inverse transformed. As
far as the authors are aware, the proposed solution is the
first approach to 3D video denoising. It is computationally
relatively lighweight, uses DCT transform, which is widely
spread in modern image and video coding standards, and does
not require depth map estimation, which is computationally
costly.

The paper is organized as follows. Section 2 describes
video denoising using Sliding Window 3D DCT algorithm
(SW-3DDCT). In Section 3 a multiview extension to SW-
3DDCT is proposed. Section 4 depicts experimental results.
Section 5 contains relevant conclusions and discussion.

2. DENOISING IN SLIDING WINDOW 3D DCT
DOMAIN

The goal of the Sliding Window 3D DCT (SW-3DDCT)
video denoising process is to restore a set of original frames
I(tr) = {I(t)}Nt=1, from the set of noisy observations
Y(tr) = {Y (t)}Nt=1. The 3D volume is created from the
set of 2D image patches, selected from the set of N frames
at consecutive temporal locations, centered at the reference
temporal location tr. Within one 3D volume the temporal
locations are selected following the equation:

tr −N/2 ≤ t < tr +N/2 (1)

The reference frame is traversed along vertical and hori-
zontal directions. For each location in the reference frame a
separate 3D volume is created. To achieve high correlation
between image patches, an image patch matching process -
motion estimation is used. Effectively, the 3D volume size is
W × H × N , where W and H are width and height of the
image patch, and N is the number of patches from temporal
positions. The process of 3D volume creation is depicted in
Fig. 1.

High correlation between patches in the 3D volume is ex-
ploited by 3D DCT transform [6]. In vertical and horizontal

Fig. 1. The 3D volume creation and SW-3DDCT denoising
process. In the step depicted, frames between vertical dashed
lines participate in denoising process.

directions the 2D transform is performed, whereas in tempo-
ral direction 1D DCT is applied. The 3D volume block size
is larger than the DCT transform size. As a consequence the
3D-DCT transform operates on the 3D volume in a sliding
manner. Every denoising step on the 3D volume is composed
of the following consecutive parts:

• 3D-DCT forward transform,

• Hard thresholding of 3D-DCT coefficients with weight
accumulation in temporal direction for nonzero coeffi-
cients,

• Inverse 3D-DCT transform,

• Storing weighted inverse transformed values to all im-
age patches in the volume.

Denoising is executed by shrinkage in the 3D transform do-
main. The procedure of hard thresholding is used to eliminate
transform coefficients, corresponding to high frequency com-
ponents, containing the noise.

3. MULTIVIEW SW-3DDCT

In case of multiview video denoising, the aim is to restore
original set of frames

I(tr,mr) = {I(t,mr)}Nt=1 ∪ {I(tr,m)}Mm=1 (2)

from its corresponding, noisy observations. The idea to ex-
tend the SW-3DDCT filtering was based on its competitive-
ness to the other state-of-art denoising methods [12] and, the
fact that, vast range of video processing tools uses similar
functionalities, already implemented in software and hard-
ware, namely, motion estimation and DCT transform. The
process described below refers to luma component only. For
chroma components the procedure is repeated.
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Fig. 2. The 3D volume creation for multiview denoising. Im-
age patches are searched in frames between dashed vertical
lines.

The set of frames is compound of temporal window of
size N, centered at the reference temporal location tr of the
reference view mr. In addition, frames from all other M − 1
views, at the reference temporal location tr are taken into ac-
count, during image patch matching. To decrease the com-
plexity, the fast, coarse-to-fine motion estimation is used. It
was found, that full search motion estimation performance
was approximately equal to course-to-fine. At the first step,
candidates at locations sampled every 8 pixels are checked.
After the best candidate is found, the search window sampling
is decreased to 4. The procedure is repeated until integer pixel
accuracy is reached.

In our algorithm, the 3D volume is created out of 8 image
patches of size 16 × 16, from temporal and inter-view direc-
tions. The dissimilarity measures for all patches are stored
and later sorted, according to the smallest values. Only 8 im-
age patches, with highest similarity, are selected for denois-
ing. The heap sort algorithm is used for sorting. To improve
the sorting speed, it is stopped early, before all the values are
sorted, when the number of patches selected for 3D volume
reaches 8. On the 3D volume prepared in that way, the regu-
lar SW-3DDCT procedure is employed. The process of mul-
tiview SW-3DDCT denoising is exposed in Fig. 2.

4. EXPERIMENTAL RESULTS AND DISCUSSION

The algorithm presented in Section 3 was tested on a set of
3D video sequences. Video sequences selected for the ex-
periment were ”Ghost Town Fly”, ”Undo Dancer”, ”Ghost
Town” and ”Sneakers” [13]. The first three sequences are
computer-generated synthetic videos and they do not contain
noise related to an image acquisition process. The ”Sneak-
ers” sequence contains computer-generated graphics on a nat-
ural image background. Every test sequence contains 9 views,
taken at 9 parallel viewpoints. Viewpoints are located on the
baseline in an uniform manner.

For the purpose of experiment, the test sequences are cor-
rupted by additive white Gaussian noise (AWGN) η(t) =
N(0, σ2), with zero mean and variance σ2. For each temporal
location we have:

Y(t) = I(t) + η(t) (3)

For every multiview sequence, four new sequences were
created, adding noise with four different standard deviations:
5, 10, 15, 20. Since the standard deviation of the noise can be
estimated from the signal [14], hard thresholds for shrinkage
operator are assumed to be known a-priori.

Currently available ASDs can render up to 28 views from
a subset of views transmitted. The MPEG suggested to use
3-view case [1] to meet the needs of many today’s ASDs. In
general the number of views in 3D video is not limited. To
test the benefit of using additional views, in the case of mul-
tiview SW-3DDCT, the experiments were performed on the
same noisy sequences for 3 different cases. For each case,
the amount of views participating in denoising was differ-
ent, particularly 3, 5, and 9. The selection was done with
the assumption, that the viewpoints location on the baseline
should be uniform, regardless the amount of views partici-
pating in denoising. For 3-view case, the most distant views
were used. For 5-view case, the views from 3-view case were
used and views between them, located on equidistant baseline
positions. For 9-view case, all available views were used.

For comparison, the performance of the single view SW-
3DDCT algorithm [6] was tested. In this case, each view
from all sequences in the test set was denoised separately, us-
ing SW-3DDCT. The size and amount of patches were the
same as in multiview case. Denoising performance was eval-
uated in terms of luma PSNR, computed against the original,
noise-free test sequences. For visual comparison, some frag-
ments of frames extracted from test sequences are depicted
in Fig.3. The numerical results of denoising are presented
in Table 1. The values present an average PSNR gain over all
denoised views. As seen from Table 1, joint denoising of mul-
tiple views provides significant improvements compared to a
single view denosing. An increase in number of views partic-
ipating in denoising leads to a performance increase. It can
be noticed from the Table 1, that the multiview SW-3DDCT
improvement over a single view SW-3DDCT is maximal for
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Table 1. Denoising performance of the Multiview SW-3DDCT for 3 different number of views participating in denoising. The
performance of the single view SW-3DDCT shown as a reference. The results are presented in terms of average luma PSNR
measure over all views participating in denoising.

PSNR gain ∆PSNR gain over single view
Sequence σ noise single view 3 views 5 views 9 views 3 views 5 views 9 views

Ghost Town Fly

5 34.14 38.01 38.27 38.65 39.29 0.25 0.64 1.27
10 28.13 35.89 36.23 36.74 37.46 0.34 0.85 1.57
15 24.62 34.21 34.58 35.13 35.83 0.37 0.92 1.62
20 22.14 33.29 33.65 34.16 34.77 0.36 0.87 1.48

Undo Dancer

5 34.14 37.18 37.19 37.34 37.73 0.01 0.16 0.55
10 28.15 34.78 34.81 35.03 35.49 0.03 0.25 0.71
15 24.72 33.06 33.09 33.34 33.83 0.03 0.29 0.77
20 22.33 32.08 32.10 32.36 32.82 0.02 0.28 0.74

Ghost Town

5 34.14 39.72 39.85 40.05 40.31 0.13 0.33 0.59
10 28.14 37.39 37.57 37.78 38.05 0.18 0.39 0.66
15 24.65 35.45 35.63 35.82 36.07 0.18 0.37 0.62
20 22.21 34.26 34.42 34.58 34.79 0.16 0.33 0.53

Sneakers

5 34.14 42.27 42.28 42.39 42.49 0.01 0.12 0.22
10 28.13 39.89 39.87 40.05 40.23 -0.01 0.16 0.34
15 24.61 37.59 37.53 37.70 37.89 -0.06 0.11 0.30
20 22.12 35.95 35.86 36.00 36.17 -0.09 0.05 0.22

AVERAGE

5 34.14 39.30 39.40 39.61 39.96 0.10 0.31 0.66
10 28.14 36.99 37.12 37.40 37.81 0.13 0.41 0.82
15 24.65 35.08 35.21 35.50 35.90 0.13 0.42 0.83
20 22.20 33.89 34.01 34.27 34.64 0.11 0.38 0.74

”Ghost Thown Fly” sequence, where it brings up to 1.62 dB.
The ”Ghost Town Fly” sequence contains camera zooming,
which breaks block-based temporal correlation. Thus, multi-
view SW-3DDCT, which exploits inter-view correlations was
much more effective in this case. Denoising performance in-
creased together with the number of views participating in the
denoising. The average use of interview patches, shown in the
Table 2, grows significantly when the number of total views
increases. From both tables, it can be seen that increase in
use of interview image patches had positive effect on denois-
ing performance increase.

The changes at temporal direction in standard video
sequence are mainly due to inter-frame motion or camera
movement. This holds for the temporal changes in multi-
view videos. However, differences between viewpoints are
due to different positions of cameras, observing the same
scene. With known camera geometry and depth informa-
tion, improved image patch matching, using warping, can be
performed which, most likely, would improve the denoising
performance. However, the depth information is not always
available and in case the depth is generated from noisy video
data, its quality is decreased. Low quality depth map im-
poses low quality image patch matching, when warping is
applied. The advantage of the approach presented here is,
that no depth information is needed to perform denoising. In
addition, depth map estimation and Depth Image Based Ren-

Table 2. Average use of interview image patches as a per-
centage of all patches.

σ 3 views 5 views 9 views
5 9.42% 19.18% 30.95%
10 10.27% 19.82% 31.37%
15 11.02% 20.48% 31.97%
20 11.73% 21.21% 32.72%

dering, used for warping image patches, are computationally
costly and prevent real-time operation.

5. CONCLUSIONS

We proposed a multiview video denoising method. Its per-
formance is comparable with state-of-art algorithms. Numer-
ical complexity is much lower than [8] since only one patch
matching step and no Wiener filtering are used. The DCT
transform is widely used and hardware implementations ex-
ist. Thus, our method is suitable for real-time implementa-
tion. It was tested on multiview 3D video sequences, cor-
rupted by AWGN. Experimental results showed substantial
improvement over the existing video denoising method [6].
Gains up to 1.62 dB in terms of average luma PSNR were ob-
served, with average gain from 0.6 to 0.8 dB, depending on
the magnitude of noise used to corrupt test sequences.
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Fig. 3. The results of denoising. Top row contains noisy data with σ = 15. Bottom row contains pairs of corresponding
denoised data, with single view denoising on the left and multiview denoising on the right, within each pair.
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