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ABSTRACT

The paper presents a new weighting function that can be used

in the method of iteratively reweighted least squares (IRWLS)

for designing equiripple all-pass IIR filters. The purpose of

introducing this weighting function is to improve the conver-

gence performance in the solution of the IRWLS. The height

of each weighting function is designed to be equal to the lo-

cal maximum of each ripple, and the width of each weighting

function is designed so that the area of each weighting func-

tion becomes equal to the area of each ripple. We show exper-

imentally that the convergence performance in the solution of

the IRWLS can be improved by using the proposed weighting

function.

Index Terms— All-Pass IIR filters, equiripple filters, it-

eratively reweighted least squares (IRWLS)

1. INTRODUCTION

In the paper, we consider the design problems that affect

equiripple all-pass IIR filters [5] - [7], [9], [10]. First, we

describe a method of solving the phase error minimization

problem for the phase of a filter and the desired phase. We

utilize a method that involves linearizing a nonlinear opti-

mization problem and then solving the filter design problem

in the same manner as the conventional method [1], [5], [11].

Next, we describe the norm which is a measure of the phase

error. The L2 norm and L∞ (minimax norm) are often used

as the values for the norm in a phase-error minimization prob-

lems [1] - [4]. When using the L∞ norm, this is known as the

equiripple design method, and many similar design methods

have been proposed [6], [13], [14]. In particular, the itera-

tively reweighted least squares (IRWLS) method, based on

a scheme that involves multiplying a least square error by a

weighting function [8], is a typical equiripple design method

[12] - [14]. However, the convergence performances of the

relevant solutions have not been referred to in these papers.

Moreover, there are even cases where the convergence of a

solution becomes unstable in some design examples.

In order to overcome these instability problems in terms of

solution convergence, we introduce a new weighting function

that can be used in the IRWLS method. The height of each

weighting function is designed to be equal to the local maxi-

mum of each ripple, and the width of each weighting function

is designed so that the area of each weighting function be-

comes equal to the area of each ripple. The object of introduc-

ing this concept of the weight function design is to properly

reflect information about phase errors in the updating of the

weighting function. In facts, by implementing weight func-

tion design in this way, we can expect to improve the conver-

gence performance in the solution of the IRWLS. In Section

4, we show experimentally how introducing the weight func-

tion into some design examples that did not originally result

in convergence when using the conventional method improves

the convergence performance in the solution of the IRWLS.

The paper is organized as follows. The method of

weighted least squares design for all-pass IIR filters is sum-

marized in Section 2. We introduce a new weighting function

that is used in the IRWLS method in Section 3. In Section

4, we show that convergence improves when using the intro-

duced weight function by showing some design examples.

Finally, the concluding remarks are given in Section 5.

2. WEIGHTED LEAST SQUARES DESIGN

In this Section, we summarize the basic formulation of

weighted least squares (WLS) design for all-pass IIR fil-

ters according to [8]. Let us consider an N -th-order all-pass

IIR filter with the transfer function

H(z) =
aN + · · ·+ a1z

−(N−1) + z−N

1 + a1z−1 + · · ·+ aNz−N

= z−N

1 +

N
∑

n=1

anz
n

1 +

N
∑

n=1

anz
−n

, (1)

where an are real coefficients. Then, the phase response is

given by

θ(ω) = −Nω + 2 arctan

(

aT s(ω)

1 + aT c(ω)

)

, (2)
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where

a = [a1a2 · · ·aN ]T ,

s(ω) = [sin(ω) sin(2ω) · · · sin(Nω)]T ,

c(ω) = [cos(ω) cos(2ω) · · · cos(Nω)]T

Suppose that the desired phase response is denoted by θd(ω),
and consider that the following equation holds [8]:

sin(α(ω))(1 + aT c(ω))− cos(α(ω))(aT s(ω)) ≈ 0, (3)

where

α(ω) =
θd(ω) +Nω

2
.

If we now square both sides of equation (3) , then we can
obtain the following weighted least squares (WLS) form:

E=
M
∑

k=1

w(ωk)
{

aT (c(ωk) sin(α(ωk))−s(ωk) cos(α(ωk))+sin(α(ωk))
}

2

,

where w(ωk) is a frequency-domain weighting function, and

M is the number of points at which the desired phase response

is sampled.

Then, the WLS estimate of coefficients an is given by

minimizing the phase error E. Therefore，by setting
∂E

∂ai
=

0, for i = 1, 2, · · · , N , Qa = d holds. Here, the elements of

Q and d are given as follows:

Q =

M
∑

k=1

w(ωk)sc(ωk)scT (ωk),

d = −

M
∑

k=1

w(ωk) sin(α(ωk)sc(ωk),

sc(ωk) = (c(ωk) sin(α(ωk))−s(ωk) cos(α(ωk)) .

As mentioned in Section 1, in order to apply the WLS

method to an equiripple design problem, a frequency-domain

weighting function w(ωk) as used in the IRWLS method [8]

plays an important role. Now, let us give a rough sketch of the

desired properties of the frequency-domain weighting func-

tion w(ωk) in IRWLS. Suppose that the absolute phase error

is denoted by en(ωk), that the sum of phase error is denoted

by E
′

n, and that a frequency-domain weighting function is de-

noted by wn(ωk), all at the n-th iteration. Then, it is desirable

to design a frequency-domain weight function such that the

sum of the phase error E
′

n and the weighting functionwn(ωk)
may be changed similarly in each iteration (see Fig.1).

3. IRWLS METHOD FOR EQUIRIPPLE ALL-PASS

IIR FILTER DESIGN

In this Section, we introduce a new weighting function that

can be used in the method of iteratively reweighted least

squares (IRWLS) for equiripple all-pass IIR filter design.

Fig. 1. A rough sketch of the desired properties of the

freqeuncy-domain weighting function in IRWL:E
′

n，en(ωk)，
and wn(ωk) should to be changed similarly in each iteration.

A frequency-domain weighting function based on the

phase error in the conventional method has been proposed

[12] - [14]. However, in the conventional method, the

frequency-domain weighting function wn(ωk) is not well

related to the absolute phase error en(ωk).
In this paper, to cope with this problem, we will relate a

minimax (L∞) phase error more closely than the conventional

method to the weighting function wn(ωk). That is, in each

iteration, frequency-domain weighting functions are designed

so that the local area of the functions becomes equal to the

local area of the phase error. In the following subsection, we

will describe in detail the design method for the weighting

function.

3.1. A design algorithm for a new weighting function

In this subsection, we describe a design algorithm for a new

weighting function that aims to improve the convergence per-

formance in the solution of the IRWLS. Let the weighting

function wn+1(ω) at the n-th iteration be given by

wn+1(ω) = wn(ω)βn(ω), (4)

where the updating function, βn(ω), is a rectangular function

that is related to the local phase error. Note that the updating

function proposed by [8] is a function of the envelope of the

phase error. Here, the distribution of the phase error eθ(ω)
is defined as the absolute phase error between the phase re-

sponse θ(ω) and the desired phase response θd(ω)

eθ(ω) = |θ(ω)− θd(ω)|. (5)

At the n-th iteration, let us suppose that the phase error dis-

tribution has P ripples (see Fig.2; P is 5 in Fig.2.). When

the total area of a p-th ripple is denoted by Êp and the local

2
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Fig. 2. A rectangular updating function βn(ωk) for a

frequency-domain weighting function

maximum of a p-th ripple is denoted by ep, the width L of

each rectangle is designed so that the area of each rectangle

becomes equal to the area of each ripple. That is, Êp = ep ·L.

Therefore, we can calculate the width L of each rectangle by

L =
Êp

ep
. (6)

Then, in each iteration, a rectangular updating function βn(ω)
can be constructed as

βn =

{

ep (ωp,0 ≤ ω ≤ ωp,1)
ep · eε (ωp,1 < ω < ωp+1,0)

for 1≤p≤P, (7)

where ωstep is the sampling width, and

|ωp,0 − ωp| = |ωp,1 − ωp| = ωstep · (L/2), (8)

and ωp is the frequency of the local maximum of a p-th ripple,

and eε is a small positive number. Let us now define

q = [e1 e2 · · · ep] (9)

qmax = max(q), qmin = min(q), (10)

C =
qmax − qmin

qmax
≤ ε, (11)

where ε is a small positive number (say, 0.001). Here, C is a

measure of the convergence determination in the IRWLS. C
can be viewed as the measure of equirippleness. If the mea-

sure of convergence determination C satisfies equation (11),

the algorithm terminates. If this is not the case, we update

the weighting function as in equation (4). We show below the

equiripple all-pass IIR filter design algorithm.

Algorithm

Step:1 set n = 1 and wn(ωk) = 1 for k = 1, 2, · · · ,M
Step:2 Compute Q,d and solve a

Step:3 Evaluate the error function eθ(ωk) = 1 for k =1,2,· · · ,
M

Step:4 Compute q, C
Step:5 If C ≤ ε , then exit

Step:6 Update a rectangular updating function as

wn+1(ω) = wn(ω)βn(ω)
Step:7 set n = n+ 1 and go to Step:2

4. DESIGN EXAMPLE

As mentioned in Section 2 and Section 3, we now show some

examples of the filter design using the proposed weight-

ing function for IRWLS (Below, we call it ”the proposed

method”.). We now experimentally show cases where the

convergence of a solution becomes unstable in some design

examples. To evaluate the design accuracy, we use the follow-

ing four types of evaluation criteria. The first is the maximum

absolute phase error emax as defined by the following equa-

tion

emax = max{|eθ(ω)|, ω ∈ [0, π]}. (12)

The second is the normalized root-mean-square (NRMS) er-

ror eθ2 as defined by the following equation

eθ2 =









∫ π

0

e2θ(ω) dω
∫ π

0

θ2d(ω) dω









1/2

· 100%. (13)

The third is the design time (sec), and the fourth is the number

of iterations required. Here, the design time is the result of the

execution environment for the following. (CPU:Intel Core2

Quad CPU Q9550(2.83GHz)，Memory:4GB，OS:Windows

Vista[32bit])

4.1. Design example

We approximate the desired phase response θd(ω) given by

θd(ω) =







−12ω (0 ≤ ω ≤ 0.3π)

−
6.4

0.7
ω +

(

6.4

0.7
− 10

)

π (0.3π < ω ≤ π).
. (14)

Here, the order is N = 10, and both ε and eε are set to 0.001.

4.1.1. Comparison of the basic performance

Fig.3 shows the result for the phase response using our

method. Fig.4 shows the result of the phase error. Fig.5

shows the shape of the weighting function at the time of con-

vergence. Furthermore, Table.1 shows the maximum absolute

phase error emax, NRMS error eθ2, the design time, and the

number of iterations for convergence. Since the conventional

method [13] did not converge, it is not indicated in the table.

3
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Fig. 3. Phase response using our method [Design example

From these figures and from the table, we can check the

basic performance of our method. Compared with conven-

tional methods, our method is able to achieve convergence in

fewer iterations, which is the aim of convergence improve-

ment. In the following subsection, we investigate in detail the

improvement in the number of iterations required for conver-

gence when using our method.

Table 1. emax, eθ2, The design time, the number of iterations

for convergence [Design example] : our method, the conven-

tional method ([13], [14])

Design The The number

design of iterations

example emax eθ2 time

Our method 0.03863 0.14416 0.31200 13

Sunder[13] Not convergent

Yong[14] 0.03866 0.15197 2.26201 97

4.1.2. Comparison of the convergence performance

In order to compare the convergence, at the n-th iteration, we

shall illustrate the measure of convergence determination C
and the measure of change in the weighting function D. The

measure of change in the weighting function D is defined by

D = |wn(ω) ∗ w
T
n (ω)− wn+1(ω) ∗ w

T
n+1(ω)|. (15)

Fig.6 shows the measure of convergence determination C
for our method and for the conventional method. Fig.7 shows

the measure of change in the weighting function D for ou

method and for the conventional method. Fig.6 shows that our

method is superior to the conventional method with respect
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Fig. 4. Frequency response error using our method [Design

example] : eθ(ω)
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Fig. 5. A new weighting function [Design example] : βn(ωk)

to the number of iterations required to achieve convergence.

Fig.7 shows that our method has quick standup capability to-

wards convergence. These results show that our method is an

effective method towards improving the number of iterations

to achieve convergence.

5. CONCLUSION

We have proposed a new weighting function for designing

equiripple all-pass IIR filters. The purpose of introducing

this weighting function is to improve the convergence perfor-

mance in the solution of the IRWLS. We have shown experi-

mentally that the convergence performance in the solution of

the IRWLS improves by using the proposed weighting func-
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Fig. 6. The measure of convergence determination C [Design

example] : ,Our method Sunder[13], Yong[14]
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tion.
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