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ABSTRACT

The problem of estimating instantaneous frequency of a non-

stationary complex sinusoid (cisoid) buried in wideband noise

is considered. The proposed approach extends adaptive notch

filtering algorithm with a nontrivial performance assessment

mechanism which can be used to optimize frequency tracking

performance of the adaptive filter. Simulation results confirm

that the proposed extension allows one to improve accuracy of

frequency estimates considerably, especially in nonstationary

conditions.

Index Terms— frequency estimation, adaptive notch fil-

tering

1. INTRODUCTION

Tracking of instantaneous frequency of nonstationary narrow-

band signals is often accomplished using adaptive notch fil-

ters (ANFs). Classical ANFs are based on constrained poles

and zeros [1] or lattice [2] designs. Recent contributions to

the field include, among others, a complex filter by Regalia

[3] and its modification proposed in [4]. These algorithms

have some desirable properties, like unbiased estimation and

fast convergence.

Most adaptation laws of ANFs include so-called adapta-

tion gains, usually adjusted so as to optimize signal, rather

than frequency, tracking performance of the filter. For many

applications, such as removing power interferences from EEG

signals [5] or tracking harmonic currents [6], this is an under-

standable optimization goal.

However, there exist applications where instantaneous

frequency is the quantity of primary interest. For instance,

rotational speed of a combustion engine can be estimated by

means of tracking fundamental frequency of acoustic noise

or vibration signal generated by the engine. In such a case

signal tracking performance of ANF is a secondary issue.

Unfortunately the two above mentioned goals (signal and

frequency tracking) are conflicting ones – ANFs which ex-

hibits optimal signal tracking performance usually underper-
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form in terms of frequency tracking and vice versa. Further-

more, it is not trivial to evaluate frequency tracking perfor-

mance of an ANF during its operation. While the quality of

signal estimates can be easily quantified using prediction er-

rors yielded by the filter, such an approach fails in case of

frequency tracking. This makes optimization of frequency

tracking performance of ANFs a tricky task. The situation

becomes even more challenging when the filter is expected to

operate in nonstationary conditions, e.g. under time-varying

signal to noise ratio.

In the paper we show how the accuracy of frequency es-

timates yielded by an ANF can be evaluated on-line, without

any prior knowledge of the true frequency trajectory. Gain-

ing upon this foundation, we later propose a novel parallel

frequency tracking scheme which is capable of adjusting its

characteristics to unknown, and possibly time-varying, condi-

tions.

The paper is organized as follows: Section 2 presents

problem formulation and ANF algorithm which will be ex-

tended later. Section 3 introduces the proposed way of eval-

uating frequency tracking performance of the ANF. Section 4

presents simulation results. Section 5 concludes.

2. PROBLEM FORMULATION

Consider the problem of estimating instantaneous frequency

of a complex-valued signal

s(t) = a(t)ej
∑

t

τ=1
ω(τ) (1)

using noisy measurements

y(t) = s(t) + v(t) , (2)

where t = 0, 1, . . . denotes dimensionless, discrete time,

a(t) is a slowly time-varying complex “amplitude”, ω(t) de-

notes instantaneous frequency and v(t) is a wideband mea-

surement noise. Note that, since a(0) is a complex quantity,

it may as well incorporate the initial phase of s(t). This is the

reason behind the absence of initial phase in (1).
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The starting point of our discussion is ANF algorithm pro-

posed in [7]. It takes the form

f̂(t) = ej[ω̂(t−1)+α̂(t−1)]f̂(t− 1)

ε(t) = y(t)− â(t− 1)f̂(t)

â(t) = â(t− 1) + µf̂∗(t)ε(t)

α̂(t) = α̂(t− 1) + γαδ(t)

ω̂(t) = ω̂(t− 1) + α̂(t− 1) + γωδ(t)

δ(t) = Im

[
ε(t)

â(t− 1)f̂(t)

]

ŝ(t) = f̂(t)â(t) , (3)

where ∗ denotes complex conjugation, the quantities â(t),
ω̂(t), and α̂(t) are the estimates of the signal’s complex am-

plitude, instantaneous frequency and instantaneous frequency

rate [α(t − 1) = ω(t) − ω(t− 1)], respectively. The param-

eters µ > 0, γω > 0, γα > 0, γα ≪ γω ≪ µ, are scenario-

dependent small adaptation gains determining the rates of am-

plitude adaptation, frequency adaptation and frequency rate

adaptation, respectively. Finally, ŝ(t) denotes the filtered es-

timate of the narrowband signal s(t).
In spite of its simplicity, the gradient frequency tracking

algorithm (3) has very good statistical properties. As shown

in [7], under the following assumptions:

(A1) The instantaneous frequency drifts according to the 2-nd

order random walk (also called integrated random walk)

ω(t) = ω(t− 1) + α(t− 1)

α(t) = α(t− 1) + w(t) , (4)

where {w(t)} forms a stationary zero-mean white noise se-

quence,

(A2) The sequence {w(t)} is Gaussian distributed, w ∼
N (0, σ2

w),
(A3) The sequence {v(t)}, independent of {w(t)}, is a zero-

mean complex Gaussian white noise, v ∼ CN (0, σ2
v),

(A4) The magnitude of the narrowband signal is constant,

|s(t)| ≡ a0,

the algorithm (3) can be made statistically efficient, i.e. it

can reach so-called Posterior Cramér-Rao bounds1 which

limit mean-squared frequency and frequency rate tracking

errors. Although closed-form expressions for the optimal

values of gains µ, γω, γα do not exist, it was shown that they

depend only on the following ‘normalized’ measure of signal

nonstationarity [7]

κ =
a20σ

2
w

σ2
v

(5)

which combines signal to noise ratio and frequency variabil-

ity.

1Classical Cramér-Rao Bound applies to systems with unknown deter-

ministic parameters. Posterior Cramér-Rao Bound applies to systems with

random parameters, such as (1)-(2).

In practical situations the above parameter is unknown

and possibly time-varying. Therefore, adaptation gains of the

filter must be hand-tuned using some cost criteria. Unfortu-

nately, when one is primarily interested in frequency tracking,

determining the optimal values of the adaptation gains is dif-

ficult because it is unclear how one could measure frequency

tracking performance.

A hand-on approach could rely on minimization of mean-

squared prediction errors ǫ(t) yielded by the filter. This

would actually correspond to the optimization of signal track-

ing properties of the filter [8]. However, the settings which

minimize signal tracking errors are different from those which

minimize frequency tracking errors [7].

To demonstrate this discrepancy between signal and fre-

quency tracking properties of the ANF it is sufficient to per-

form a simple simulation experiment. For the purpose of

such demonstration we used a nonstationary complex sinu-

soid with instantaneous frequency and amplitude governed by

ω(t) = 0.2 + 0.1 cos(2πt/2000)

a(t) = 3 + sin(2πt/500) , (6)

where t ∈ [0, 5000]. The variance of the wideband noise was

σ2
v = 0.01.

Fig. 1 shows the steady-state (the first 1000 samples of the

output was discarded to guarantee that steady-state conditions

were reached) mean-squared signal tracking errors ∆s(t) =
s(t) − ŝ(t), frequency tracking errors ∆ω(t) = ω(t) − ω̂(t)
and prediction errors ǫ(t) for different settings of the filter. To

reduce the number of degrees of freedom, the gains µ, γω, γα
were set according to the following rule of thumb, suggested

in [7],

γω = µ2/2 γα = µ3/8 . (7)

It is clear from the results that signal prediction errors are

not a good measure of frequency tracking performance and a

different quantity must be used for this purpose.

3. PROPOSED WAY OF ASSESSING FREQUENCY

TRACKING ERRORS

Prior to proposing a meaningful way of evaluating frequency

tracking errors, one should gain some insight into operation

of the filter (3). Let |s(t)|2 = a20 ≡ const, and e(t) =
−Im [v(t)s∗(t)/a20]. Note that, when (A3) holds, {e(t)} is

a zero mean Gaussian (real-valued) white noise with variance

σ2
e = σ2

v/2a
2
0.

Using the approximating linear filter technique, intro-

duced in [9] for the purpose of analyzing tracking properties

of ANF algorithms, it can be shown that, under good tracking

conditions, i.e. when ∆ω(t) ≈ 0, the following relationship

holds [7]

∆ω(t) = H1(q
−1)e(t) +H2(q

−1)w(t) ,

2
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Fig. 1. Comparison of the steady state mean squared signal

tracking errors ∆s(t) = s(t)− ŝ(t), frequency tracking errors

∆ω(t) = ω(t) − ω̂(t) and prediction errors ǫ(t) for different

settings of the filter.

where

H1(q
−1) =

(1− q−1)[γω + (γα − γω)q
−1]

D(q−1)

H2(q
−1) =

q−1[1− γω − (1 − µ)q−1]

D(q−1)

D(q−1) = 1 + d1q
−1 + d2q

−2 + d3q
−3 (8)

d1 = µ+ γω + γα − 3

d2 = 3− 2µ− γω

d3 = µ− 1 .

The filters H1(q
−1), H2(q

−1) are asymptotically stable if the

following (sufficient) conditions hold: 0 < µ < 1, 0 < γω <
1, 0 < γα < 1 and µ(γω + γα) > γα.

Employing the fact that [c.f. (4)]

ω(t) =
w(t− 1)

(1 − q−1)2

it is straightforward to arrive at

ω̂(t) = Q(q−1)[ω(t) + (1− q−1)e(t)] , (9)

where

Q(q−1) =
H1(q

−1)

1− q−1
=

γω + (γα − γω)q
−1

D(q−1)
. (10)

Observe that the estimates yielded by the notch filter may

be treated as a result of processing the signal

u(t) = ω(t) + (1− q−1)e(t) (11)

with the filter Q(q−1). It is therefore the signal u(t), rather

than y(t), which plays the role of noisy ‘measurements’ in the

frequency estimation problem.

Furthermore note that, even though u(t) is not directly ac-

cessible, it may be recovered, whenever necessary, by means

of inverse filtering frequency estimates ω̂(t)

u(t) =
1

Q(q−1)
ω̂(t) . (12)

It follows from the above discussion that the quality of

frequency estimates could be measured using a one-step pre-

dictor û(t|t − 1) of the signal u(t). To make the proposed

approach sound, one should design the predictor in such a

way so as to ‘share’ its settings with that of the ANF. Such a

predictor can be designed using Wiener approach.

It can be shown that the transfer function of the optimal

(in the mean-square sense) Wiener predictor of the signal u(t)
takes the form (see [10] for details of the derivation)

X(q−1) =
NP (q

−1)

N(q−1)
. (13)

where NP (q
−1), degNP (q

−1) = degN(q−1) − 1 is the so-

lution of the following Diophantine equation

qαA(q−1) +NP (q
−1) = qN(q−1) .

and N(q−1) is a stable transfer function such that

N(q−1)N(q) = σ2
e +A(q−1)A(q)C(q−1)C(q)σ2

w

A(q−1) = (1− q−1)2 = 1− 2q−1 + q−2

C(q−1) = (1− q−1) (14)

On the other hand, the transfer function Y (q−1) of the

optimal, in the mean-squared sense, estimator of ω(t) takes

the form

Y (q−1) =
F (q−1)

N(q−1)
. (15)

Note that, under (A1)-(A4), for the optimal values of

adaptation gains of the algorithm (3) it must hold that

Q(q−1) = Y (q−1), i.e.

D(q−1) = cN(q−1) ,

where c is some constant. This also means that

X(q−1) =
DP (q

−1)

D(q−1)
, (16)

where

DP (q
−1) = (2 + d1) + (d2 − 1)q−1 + d3q

−2 (17)

solves

qβA(q−1) +DP (q
−1) = qD(q−1) .

3
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Fig. 2. Comparison of the mean-squared steady-state fre-

quency tracking errors yielded by the adaptive notch filter

with the mean-squared prediction errors yielded by the pro-

posed predictor for frequency changes governed by the inte-

grated random walk model.

Combining all the partial results, after some elementary

calculations, one can arrive at the following expression for

computing prediction errors of u(t)

ξ(t) = u(t)− û(t|t− 1) = [1− q−1X(q−1)]u(t)

=
[1− q−1X(q−1)]

Q(q−1)
ω̂(t)

=
1− 2q−1 + q−2

γω + (γα − γω)q−1
ω̂(t) . (18)

4. SIMULATION RESULTS

4.1. Predictor verification

In order to check how well the performance of the proposed

predictor matches frequency estimation performance of the

ANF algorithm (3), two computer simulations were con-

ducted.

In the first simulation, frequency changes were governed

by the integrated random-walk model (A1)-(A4) with σ2
w =

10−8, |a0|2 = 100 and σ2
v = 1, i.e. κ = 10−8. Several

ANFs of the form (3), with adaptation gains optimized for κ
ranging from 10−10 to 10−4 (the optimal values of adaptation

gains were found using numerical methods, see [7] for more

details) were used for frequency estimation.

Fig. 2 shows the comparison of mean-squared frequency

estimation errors yielded by the algorithm (3) for different set-

tings with the corresponding mean-squared prediction errors

yielded by (18). Note the agreement between shapes of both

curves. In particular the minima of both curves coincide.
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Fig. 3. Comparison of the mean-squared steady-state fre-

quency tracking errors yielded by the adaptive notch fil-

ter with the mean-squared prediction errors yielded by the

proposed predictor for sinusoidal frequency and amplitude

changes.

In the second simulation, the profiles of instantaneous fre-

quency and amplitude were modified to more realistic ones

ω(t) = 0.2 + 0.1 cos(2πt/2000)

a(t) = 3 + sin(2πt/500) . (19)

The gains of the filters were now set as follows: µk ∈
[0.05, 0.25], γω,k = µ2

k/2, γα,k = µ3
k/4. The results of

the experiment, shown in Fig. 3, confirm that the proposed

predictor can be used to assess the performance of algo-

rithm (3) filters, not only for the 2nd order random walk type

changes, but also in a realistic setup.

4.2. Parallel tracker

Denote by T (t) = [t − M − 1, t] the local evaluation win-

dow consisting of M samples. Combining (3), (12) and (16)

one can propose the following parallel frequency tracking

scheme.

A bank of K adaptive notch filters of the form (3) with

gains µk, γω,k, γα,k, k = 1, 2, . . . provides (independent)

partial estimates ω̂k(t), k = 1, 2, . . . ,K . The quality of all

partial estimates is evaluated using (18) and the best perform-

ing filter is selected using the following mechanism

k∗(t) = arg mink=1,2,...,K

[
t∑

i=t−M+1

|ξk(i)|
2

]
,

At any time instant, the output of the parallel estimator corre-

sponds to the locally best estimate

ω̂(t) = ω̂k∗(t)(t) .

4
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Fig. 4. Comparison of the mean-squared frequency tracking

errors of the individual filters (pluses) and the parallel scheme

(line) for M = 50.

Performance of the proposed parallel scheme was evalu-

ated using the following two-mode signal

ω(t) =

{
0.3 for t < 2000
0.3 + 0.1 cos(2πt/1000) for t ≥ 2000

a(t) = 3 + sin(2πt/500) . (20)

Note that the above signal incorporates two sources of nonsta-

tionarity: magnitude variation and frequency variation. The

variance of wideband measurement noise in the experiment

was σ2
v = 0.01.

A total of sixteen ANFs was used to provide partial

estimates. The gains of preliminary estimators was set as

µk = 0.05 + 0.01(k − 1), γω,k = µ2
k, γα,k = µ3

k/8,

k = 1, 2, . . . , 16.

Fig. 4 compares mean-squared frequency tracking errors

of individual filters in the bank with the final estimate for

M = 50. Note that the accuracy of the parallel scheme ex-

ceeds performance of all the ANFs making up the bank. This

confirms that the parallel scheme is capable of adjusting its

properties to time-varying conditions.

The experiment was repeated with noise variance in-

creased by 10 and 20 dB, respectively. In both cases the

parallel solution yielded smaller (2.47 · 10−6 and 9.06 · 10−6,

respectively) mean squared errors than the best tuned filter

from the bank (2.91 · 10−6 and 10.32 · 10−6, respectively).

5. CONCLUSIONS

The problem of estimating instantaneous frequency of a

nonstationary complex sinusoid (cisoid) buried in wideband

noise was considered. We proposed a nontrivial extension

of the adaptive notch filtering algorithm which enables one

to evaluate its frequency tracking performance without any

prior knowledge of true frequency values. The new assess-

ment mechanism was successfully employed in a parallel

frequency tracker, which was shown to cope well with un-

known and time-varying conditions.
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[7] M. Niedźwiecki and M. Meller, “New algorithms for

adaptive notch smoothing,” IEEE Transactions on Sig-

nal Processing, vol. 59, no. 5, pp. 2024–2037, 2011.
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