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ABSTRACT

In this paper we present a sophisticated variational Bayes
framework for learning infinite Beta-Liouville mixture mod-
els. A key feature of the proposed framework is that the
appropriate mixture model complexity can be discovered au-
tomatically from the data to cluster as part of the inference
procedure. Another important advantage is that the whole
inference process itself is analytically tractable with closed-
form solutions. Moreover, the problems of over-fitting and
under-fitting are also prevented thanks to the nonparametric
Bayesian nature of the proposed framework. The effec-
tiveness of our statistical framework is investigated on two
challenging motion recognition tasks including hand gesture
and human activity recognition.

Index Terms— Clustering, mixture models, Dirichlet
process, Beta-Liouville, variational Bayes, hand gesture, hu-
man activity.

1. INTRODUCTION

During the last decade, finite mixture models have drawn sig-
nificant attention and have been applied in many fields such
as machine learning, image processing and bioinformatics
[1]. Conventionally, a finite mixture model, as a parametric
approach, uses a fixed and finite number of components for
learning the underlying structure of data. However, this may
cause over-fitting or under-fitting of the data when there is a
misfit between the complexity of the model (the number of
components) and the amount of data that is available. Thus,
a central problem in mixture modeling concerns model com-
plexity (i.e. selecting the optimal number of components that
best describes the data). Approaches based on frequentist
learning (e.g. maximum likelihood) are generally prone to
severe over-fitting and are fraught with difficulties for apply-
ing them in practice especially for high-dimensional data.
An alternative to parametric modeling and is the Bayesian

The completion of this research was made possible thanks to the Natural
Sciences and Engineering Research Council of Canada (NSERC).

nonparametric approach which allows the complexity of
models to increase with data size [2]. One of the most
popular Bayesian nonparametric models is the Dirichlet pro-
cess (DP) [2] model which is often considered as an infinite
mixture. Interest in infinite mixture models has grown con-
siderably in recent years in domains such as image and signal
processing, computer vision and machine learning [3]. In
DP mixture modeling, the actual number of components used
is not fixed and can be automatically inferred from the data
set using a Bayesian posterior inference framework based,
for instance, on Markov chain Monte Carlo (MCMC) tech-
niques [4]. MCMC methods are well established and have
been widely used for the learning of infinite mixture models,
but are time-consuming and it is very difficult to assess their
convergence. An efficient alternative to MCMC techniques
is a deterministic approximation approach known as varia-
tional Bayes [5, 6]. Variational Bayes is based on analytical
approximations to the posterior distribution and has been
successfully applied for learning latent variable models in
general and mixtures of distributions in particular [7, 8] due
to its computational efficiency and convincing generalization
power.
The purpose of this paper is to propose a Bayesian nonpara-
metric approach for clustering based on Dirichlet processes
mixtures. Rather than adopting Gaussian distributions as in
many classic approaches, we use Beta-Liouville distributions
to learn the underlying model of data. The motivation of
employing Beta-Liouville distributions is due to its excellent
modeling capabilities in the case of non-Gaussian data in
general and proportional data (e.g. normalized histograms)
in particular [9]. Our contributions are summarized as the
following: first, we extend the finite Beta-Liouville mix-
ture model into an infinite version using a stick-breaking
construction [10]. Second, we develop a variational Bayes
framework for learning the proposed model, such that the
whole inference process is analytically tractable with closed-
form solutions. Finally, we apply the proposed model on two
challenging motion recognition tasks including hand gesture
and human activity recognition.
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The rest of this paper is organized as follows: Section 2
presents our infinite Beta-Liouville mixturemodel. In Section
3, we describe our variational Bayes framework for learning
the proposed model. Section 4 presents the experimental
results. Section 5 closes this paper with conclusions.

2. MODEL SPECIFICATION

2.1. Finite Beta-Liouville Mixture Model

Assume that a D-dimensional vector !X = (X1, . . . , XD) is
distributed according to a Beta-Liouville distribution, then its
probability density function (pdf) is defined by [9]:

BL( !X|!θ) =
Γ(

∑D
l=1 αl)Γ(α + β)

Γ(α)Γ(β)

D∏

l=1

Xαl−1
l

Γ(αl)

×

( D∑

l=1

Xl

)α−
∑D

l=1
αl
(
1−

D∑

l=1

Xl

)β−1

(1)

where !θ = (α1, . . . ,αD,α,β) are the parameters of the
Beta-Liouville distribution. Now let us consider a set of
N vectors X = { !X1, . . . , !XN}, where each vector !Xi =
(Xi1, . . . , XiD) is assumed to be generated from a finite
Beta-Liouville mixture model withM components as

p( !Xi|!π, !θ) =
M∑

j=1

πjBL( !Xi|θj) (2)

where θj = (αj1, . . . ,αjD,αj ,βj) are the parameters of a
Beta-Liouville distribution corresponding to component j.
!π = (π1, . . . ,πM ) in Eq. (2) represents the vector of mixing
coefficients which are subject to the following constraints:
0 ≤ πj ≤ 1 and

∑M
j=1 πj = 1.

2.2. Infinite Beta-Liouville Mixture Model

In this subsection, we extend the finite Beta-Liouville mixture
model to the infinite case by exploiting a Dirichlet process
(DP) framework. In our work, we construct the DP using
a stick-breaking representation, which is defined as follows
[10]: a random distribution G is distributed according to a
DP with a base distributionH and concentration parameter ψ
(denoted as G ∼ DP(ψ, H)), if the following requirements
are satisfied:

λj ∼Beta(1,ψ), Ωj ∼ H

πj = λj

j−1∏

k=1

(1 − λk), G =
∞∑

j=1

πjδΩj
(3)

where δΩj
denotes the Dirac delta measure centered at Ωj ,

and πj is the mixing proportion in terms of mixture model-
ing terminology and is defined by recursively breaking a unit
length stick into an infinite number of pieces.

Assuming now that we have observed a dataset X which is
generated from a Beta-Liouville mixture model with a count-
ably infinite number of components. Then, the infinite Beta-
Liouville mixture model can be written as

p( !Xi|!π, !θ) =
∞∑

j=1

πjBL( !Xi|θj) (4)

Next, a binary latent variable !Zi = (Zi1, Zi2, . . .) is placed
over each vector !Xi, such that Zij ∈ {0, 1} and Zij = 1

if !Xi belongs to component j and 0, otherwise. The prior
distribution of latent variables Z = (!Z1, . . . , !ZN ) is given by

p(Z|!π) =
N∏

i=1

∞∏

j=1

π
Zij

j (5)

Notice that, !π is a function of !λ according to the stick-
breaking construction of DP as shown in (3). Then, we have

p(Z|!λ) =
N∏

i=1

∞∏

j=1

[
λj

j−1∏

s=1

(1− λs)
]Zij (6)

According to (3), the prior of !λ is a specific Beta distribution:

p(!λ|!ψ) =
∞∏

j=1

Beta(1,ψj) =
∞∏

j=1

ψj(1− λj)
ψj−1 (7)

The next step is to place priors over parameters αl, α and
β in our Bayesian model. Since αl, α and β are positive,
Gamma distribution G(·) is adopted to approximate conju-
gate priors for these parameters. Thus, we can obtain the
following prior distributions for αl, α and β, respectively:
p(αl) = G(αl|ul, vl), p(α) = G(α|g, h), p(β) = G(β|s, t).

3. MODEL LEARNING VIA VARIATIONAL BAYES

In this section, we develop a variational Bayes framework
for learning the infinite Beta-Liouville mixture model. To
simplify notations, we define Θ = {Z,!λ, !θ}. The main idea
in variational learning is to find an approximation Q(Θ) for
the posterior distribution p(Θ|X ). In this work, we adopt
factorial approximation [6] (or mean fields approximation
[11]), which has been successfully applied in the past to com-
plex models involving incomplete data, to factorize Q(Θ)
into disjoint tractable factors. Furthermore, motivated by
[12], we truncate the stick-breaking representation for the
infinite Beta-Liouville mixture model at a value of M as:
λM = 1 ,πj = 0 when j > M ,

∑M
j=1 πj = 1. Here, the

truncation level M is a variational parameter which can be
freely initialized and will be optimized automatically during
the learning process. In variational Bayes learning, the gen-
eral expression for updating a variational factor is given by
[6]:

Qa(Θa) =
exp

〈
ln p(X ,Θ)

〉
!=a∫

exp
〈
ln p(X ,Θ)

〉
!=a

dΘ
(8)
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where 〈·〉#=a denotes an expectation with respect to all the fac-
tor distributions except for a. Then, we can obtain the varia-
tional solution for each factor as

Q(Z) =
N∏

i=1

M∏

j=1

r
Zij

ij , Q(!λ) =
M∏

j=1

Beta(λj |cj , dj) (9)

Q(!αl) =
M∏

j=1

D∏

l=1

G(αjl|u
∗
jl, v

∗
jl) (10)

Q(!α) =
M∏

j=1

G(αj |g
∗
j , h

∗
j ) Q(!β) =

M∏

j=1

G(βj |s
∗
j , t

∗
j ) (11)

where we have

rij =
r̃ij∑M
j=1

r̃ij
, cj = 1+

N∑

i=1

〈Zij〉, dj = ψj+
N∑

i=1

N∑

k=j+1

〈Zik〉

(12)

r̃ij = exp

[
Ĩj + H̃j + (ᾱj −

D∑

l=1

ᾱjl) ln(
D∑

l=1

Xil) +
j−1∑

k=1

〈ln(1 − λk)〉

+
D∑

l=1

(ᾱjl − 1) lnXil + (β̄j − 1) ln(1−
D∑

l=1

Xil) + 〈lnλj〉

]
(13)

v∗jl = vjl −
N∑

i=1

〈Zij〉
[
lnXil − ln(

D∑

l=1

Xil)
]

(14)

t∗j = tj −
N∑

i=1

〈Zij〉 ln(1−
D∑

l=1

Xil) (15)

h∗
j = hj −

N∑

i=1

〈Zij〉 ln(
D∑

l=1

Xil) (16)

u∗
jl = ujl +

N∑

i=1

〈Zij〉ᾱjl

[
Ψ(

D∑

l=1

ᾱjl) +Ψ′(
D∑

l=1

ᾱjl)
D∑

d !=l

(〈lnαjd〉

− ln ᾱjd)ᾱjd −Ψ(ᾱjl)

]
(17)

g∗j = gj +
N∑

i=1

〈Zij〉
[
β̄jΨ

′(ᾱj + β̄j)(〈lnβj〉 − ln β̄j)−Ψ(ᾱj)

+Ψ(ᾱj + β̄j)
]
ᾱj (18)

s∗j = sj +
N∑

i=1

〈Zij〉
[
ᾱjΨ

′(ᾱj + β̄j)(〈lnαj〉 − ln ᾱj)−Ψ(β̄j)

+Ψ(ᾱj + β̄j)
]
β̄j (19)

where Ψ(·) is the digamma function. Ĩj and H̃j in (13)
are the lower bounds of Ij =

〈
ln Γ(

∑D
l=1

αjl)∏
D
l=1

Γ(αjl)

〉
and Hj =

〈
ln Γ(αj+βj)

Γ(αj)Γ(βj)

〉
, respectively. Since these expectations are

analytically intractable, we adopt the second-order Taylor se-
ries expansion to compute their lower bounds. The expected
values in the above formulas are defined as

ᾱjl =
u∗
jl

v∗jl
, ᾱj =

g∗j
h∗
j

, β̄j =
s∗j
t∗j

(20)

〈Zij〉 = rij ,
〈
lnαjl

〉
= Ψ(u∗

jl)− ln v∗jl (21)
〈
lnαj

〉
= Ψ(g∗j )− ln h∗

j ,
〈
ln βj

〉
= Ψ(s∗j )− ln t∗j (22)

〈
lnλj

〉
= Ψ(cj)−Ψ(cj+dj),

〈
ln(1−λj)

〉
= Ψ(dj)−Ψ(cj+dj)

(23)
Since the solutions to each variational factor are coupled to-
gether through the expected values of other factors, the opti-
mization of the model can be solved in a way analogous to
the EM algorithm. The variational Bayes algorithm for learn-
ing infinite Beta-Liouville mixture models is summarized in
Algorithm 1.

Algorithm 1
1: Choose the initial truncation levelM .
2: Initialize the values for hyperparameters ψj , ujl, vjl, gj , hj , sj
and tj .

3: Initialize the values of rij byK-Means algorithm.
4: repeat
5: The variational E-step:
6: Estimate the expected values in (20)∼(23), use the current

distributions over the model parameters.
7: The variational M-step:
8: Update the variational solutions for each factor using (9), (10)

and (11) with the current values of the moments.
9: until Convergence criterion is reached.
10: Compute the expected value of λj as 〈λj〉 = cj/(cj + dj) and

substitute it into (3) to obtain the estimated values of the mixing
coefficients πj .

11: Detect the optimal number of componentsM by eliminating the
components with small mixing coefficients close to 0.

4. EXPERIMENTAL RESULTS

We test the effectiveness of the proposed variational infinite
Beta-Liouville mixture model (InBLM) on a challenging task
namely spatio-temporal object (or motion) recognition. In our
work, motion recognition was performed in two different do-
mains including hand gesture and human activity recognition.
We adopted a recently proposed interest point detector which
has shown promising performance in motion recognition
[13]. It is known as the NNMF interest point detector since
it is based on non-negative matrix factorisation (NNMF).
Compared with other popular spatiotemporal interest point
detectors which use local information only, the NNMF in-
terest point detector exploits global information from each
video input and has demonstrated better results in motion
recognition according to [13]. In all of our experiments,
we initialize the truncation level M and the hyperparameter
ψj to 20 and 0.1, respectively. In order to provide broad
non-informative prior distributions, the initial values of hy-
perparameters ujl, gj , sj of the Gamma priors are set to 1,
and vjl, hj , tj are set to 0.01. In order to show the merits
of our approach, we have compared our approach with four
other well-defined mixture-modeling approaches: the finite

3
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Beta-Liouville mixture model (FiBLM), the infinite general-
ized Dirichlet mixture model (InGDM), the infinite Dirichlet
mixture model (InDM) and the infinite Gaussian mixture
model (InGM) [12]. To have a fair comparison, all of these
approaches are learned by variational Bayes.

4.1. Experimental Design

The methodology that we have adopted for motion recogni-
tion can be summarized as follows. First, we detect spa-
tiotemporal interest points and their locations from each video
using the NNMF interest point detector. In our case, the spa-
tial and temporal scales are set to 2 and 4, respectively. Next,
K-Means algorithm is applied to quantize the obtained inter-
est point features to form a visual vocabulary and each cluster
center is treated as a visual word. Applying the paradigm
of bag-of-words, a histogram representing the frequency of
each visual word is calculated for each video. Then, we ap-
ply the probabilistic latent semantic analysis (pLSA) model
[14] to reduce the dimensionality of the resulting histograms
which allows the description of each video as a vector of pro-
portions (50-dimensional). Finally, we employ the proposed
InBLM as a classifier to recognize motions by assigning the
testing video to the category which has the highest posterior
probability according to Bayes’ decision rule. We run the al-
gorithm 20 times to investigate its performance. The results
of recognizing hand gestures and human activities by our ap-
proach and other comparable approaches will be described in
the following subsections.

4.2. Hand Gesture Recognition

For hand gesture recognition, we adopted a publicly avail-
able database namely the Cambridge-Gesture database 1

[15]. It consists of 900 image sequences of 9 hand ges-
ture classes, which are defined by 3 primitive hand shapes
(“Flat”, “Spread” and “V-shape”) and 3 primitive motions
(Leftward, rightward and contract). Each class contains 100
image sequences with a size of 320×240 pixels. Sample
frames from this database can be viewed in Fig. 1. In our
experiment, half of the data was randomly chosen for con-
structing the visual vocabulary and the other half was used
for testing. Figure 2 shows the confusion matrix for the
Cambridge-Gesture database using the InBLM. Table 1 il-
lustrates the average recognition accuracy obtained by each
tested approach. According to this table, it is obvious that
the proposed InBLM gave the best performance in terms of
the highest recognition accuracy rate (89.44%). The fact that
InBLM outperformedFiBLM confirms the advantage of using
infinite mixture model over finite mixture model. Moreover,
we may notice that InGM provided the worst performance
among all infinite mixture models. This result proves that

1http://www.iis.ee.ic.ac.uk/icvl/ges db.htm

Fig. 1. Sample frames from the Cambridge-Gesture database.
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Fig. 2. Confusion matrix obtained by InBLM for the
Cambridge-Gesture database.

Gaussian mixture model is not a good choice for handling
proportional data.

Table 1. The average recognition rate (%) using different ap-
proaches for hand gestures and human activities.

Method Hand Gesture Human Activity
InBLM 89.44 ± 0.75 85.90 ± 0.85
FiBLM 85.98 ± 0.82 83.15 ± 1.12
InGDM 86.37 ± 0.78 83.09 ± 0.95
InDM 84.29 ± 0.91 80.30 ± 1.02
InGM 82.18 ± 1.04 77.56 ± 1.19

4.3. Human Activity Recognition

In this subsection, we have applied our approach on theWeiz-
mann human action database [16] for recognizing human ac-
tivities. It contains of 90 video sequences at a resolution of
180×144 pixels. Ten different types of human actions are
performed by nine subjects. Some examples of frames from
each action class are displayed in Fig. 3. In our case, we
use a leave-one-out setup to test the performance of our ap-
proach. Specifically, we construct our visual vocabulary from
the video sequences of eight subjects and perform testing on
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the sequences of the remaining subject. The confusion matrix
for the Weizmann human action database using the InBLM
is demonstrated in Fig. 4. The overall accuracy is around
85.90%. As we can see, most errors are generated from simi-
lar action categorizes, such as “run” with “walk”, “jump”with
“skip”, “skip” with “jump” and “run”. The average recogni-
tion rate by each testing approach is shown in Table 1. It is
clear that InBLM outperforms other approaches by providing
the highest recognition accuracy rate.

bend jack jump pjump run

side skip walk wave1 wave2

Fig. 3. Sample frames from the Weizmann database.
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Fig. 4. Confusion matrix obtained by InBLM for the Weiz-
mann human action database.

5. CONCLUSION

In this paper we have proposed a statistical framework that
builds on recent developments in infinite mixture models and
variational inference. More specifically, we have developed
an infinite Beta-Liouville mixture which can provide a prac-
tical solution to the challenging problem of model selection.
It is learnt using a variational Bayes framework in which the
whole inference process is analytically tractable with closed-
form solutions. The considered variational inference is com-
putationally efficient and offers a deterministic effective al-
ternative to fully Bayesian inference by maximizing a lower
bound on the marginal likelihood. The merits of the proposed
approach has been tested on two challenging motion recogni-
tion tasks namely hand gesture and human activity recogni-
tion.
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