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ABSTRACT

Musical instrument recognition has recently received grow-
ing attention from the research community and music indus-
try. It plays a significant role in multimedia applications.
Many approaches have been proposed to classify musical in-
struments. Particularly, the articulation refers to the style in
which a song’s note is played. In this paper, we propose a
new avenue for musical instrument classification into two cat-
egories: Pizzicato and Sustain articulations. New features de-
rived from chromagram contours are investigated by using the
classical invariant moments. A comparison with a reference
system using a feature vector constructed from 38 feature pa-
rameters and using k-NN classifier is provided. The standard
RWC database is used for all experiments.

1. INTRODUCTION

The frequency range of signals resulting from the vibration
of material (air) is located between the infrasound and ultra-
sound. Specifically, sounds audible to the human ear is be-
tween 20 Hz and 20000 Hz. The sound waves upon arriving
at the ear are analyzed by the auditory cortex to extract and
generate a characteristic auditory sensation such as speech,
noise, wind, whistling, musical notes, etc. Music is the sound
composition class that produces an auditory sensation simi-
lar to what a painter produces with his brush as sensation to
human eye. Music can be defined as a state of sound art to
express joy, sadness, melancholy, humor, anger, affection, in
short our state of being. Unlike speech, music signal contains
a wide variety of descriptors characterizing the wealth of in-
formation contained in the audio signal. Some of this infor-
mation is often: pitch, harmony, beat, rhythm, melody, onset,
offset, attack, melody, chorus, meter, timbre, artist identity,
genre, etc. The music composition and analysis are funda-
mentally built on 4 basic elements that are often interrelated:
melody, harmony, rhythm and arrangement. The timbre (also
called color) is another characteristic element of the musical
instrument that allows us to distinguish between two instru-
ments playing the same melody with the same sound’s pitch,

and loudness. In fact, each note from musical instrument may
have an even greater variety of frequencies according to the
type of instrument. The number and energy associated to
the fundamental, the all harmonics and their relationship to
each other, create the different musical timbre. Therefore,
there is a direct relationship between timbre and musical in-
strument identification. The challenge is to determine which
attributes characterize best the multidimensional perceptual
timbre. Psycho-acousticians sketches timbre as a geometric
construction built from similarity ratings. Multidimensional
scaling is generally used to find sound attributes that correlate
best with the perceptual dimensions (brightness, smoothness,
compactness, etc.) [1, 2]. From the same idea, research in mu-
sical instrument identification began with the construction of
a vector space describing the timbre or commonly named the
space timbre. The main idea is to reduce the dimension of the
feature vectors while preserving the natural topology of the
instrument timbre; a practical interpretation should emerge.
Recently, many works are based on the hierarchical natural
taxonomy to achieve the task of musical instrument recogni-
tion. Natural taxonomy separates in the first step, the pizzi-
cato instruments, whose attack is abrupt and the sustained in-
struments, where the holding time is constant. Pizzicato in-
struments have particularity that the excitation source is given
by a pulse and the holding time depends on the intensity of
the pulse. Sustained instruments have the particularity that
the excitation source is applied consistently until you release
the note. At the second level, the instruments are grouped by
family and mode of production. In the subclass of pizzicato
instruments, only one family is present (stringed instruments).
For the subclass of sustained instruments, four groups of in-
struments are present: brass, flutes/piccolo, reed and stringed
instruments. In this paper, we are interested to propose new
parameters for the instruments classification into two cate-
gories: pizzicato and sustained. The proposed parameters
give a new description based only on chromagram contours
allowing the identification of both tonal content and the tim-
bre instrument (identity). A comparison with a reference sys-
tem using most common components in domain is presented.
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The proposed sub-system allows recognition systems to pro-
ceed with a first hierarchical classification.

2. RELATED WORK

All features proposed in the last years attempt to describe
the multidimensional vector representing the perceptive hu-
man sensation into the timbre space. Since several decades,
various parameters derived from time attack, time release,
spectral centroid, harmonic partials, onset, and cutoff fre-
quency exhibit relevant information to characterize quality
attributes of timbre instruments as orchestral instruments,
bowed string, brightness, harmonic and inharmonic structure,
etc [1, 2, 3]. Recently, many features related to charac-
terization of the excitation sound source and the resonant
instrument structure extracted from transformed correlogram
were suggested in [4]. All the 31 features extracted from
each tone based on statistical measures are related to pitch,
harmonic structure, attack, tremolo and vibrato proprieties.
They are assumed to capture a partial information of tone
color (timbre). In addition, assuming that the human audi-
tory perception system is organized to recognize sounds in a
hierarchical manner, a similar classification scheme was sug-
gested and compared in the same work [4]. Results show a
score improvement about of 6% for individual instrument and
8% for instrument family recognitions. Instead, Eronen [5]
exploited the psychoacoustic knowledge to determine feature
parameters describing the music timbre. Essentially, statisti-
cal measures based pitch, onset, amplitude modulation, Mel
Frequency Cepstral Coefficients (MFCC), Linear Predictive
Coding (LPC) and their derivatives are investigated as param-
eters. Results show that the MFCC and derivatives extracted
from the onset and steady state segments give mainly the best
performance, comparatively to others aggregated features.
Performance comparison between direct and hierarchical
classification techniques was examined in [4, 6] showing a
particular interest with the last technique. Particularly, Hall
et al. [6] used 6698 notes with the hierarchical classification
proposed in [5] and constructed a system where the feature
vector is dynamic and changes depending on each level and
each node of the hierarchical tree. The feature vector was
thus optimized and determined with the Sequential Forward
Selection (SFS) algorithm. Using the Real World Computing
(RWC) music database [7], the results showed a score gain in
musical instrument recognition performance [6]. Kitahara et
al. [8, 9] used pitch-dependent algorithms as an F0-dependent
multivariate normal distribution, where each element of the
mean vector is represented by a function of F0.

Table 1. Database Description.
Instrument Notes Instrument Notes
Accordion 282 Acoustic Guitar 463
Alto Sax 198 Banjo 208
Baritone Sax 198 Bassoon (Fagotto) 240
Cello 377 Clarinet 240
Cornet 62 Electric Bass 676
Electric Guitar 468 English Horn 60
Flute 148 French Horn 218
Harmonica 168 Mandolin 283
Oboe 132 Pan Flute 74
Piccolo 200 Pipe Organ 56
Recorder 150 Soprano Sax 198
Tenor Sax 196 Trombone 194
Trumpet 141 Tuba 180
Ukulele 144 Viola 360
Violin 384

Total : 6698

3. METHODOLOGY

3.1. Database

Database ”RWC Music Database for Musical Instrument
Sound ” [7] was chosen in this work. In this database, each
audio file contains the signal of a single instrument played
with isolated notes. This database provides multiple records
for each instrument: different manufacturers for the same in-
strument and different musicians took part to generate records
and provide a range of several instrumental signatures. In
principle, it contains three variations for each instrument:
three manufacturers, three musicians and three different dy-
namics. For each instrument, the musician is playing each
note individually at an interval of a semitone over the entire
possible range of the instrument. In terms of string instru-
ments, the full range for each chord is played. Dynamics also
varied with intensities strong, mezzo and piano. Table 1 gives
specification over the type and number of musical instruments
used in current experiments.

3.2. Reference system

The reference system proposed in [6, 10] uses a feature vector
built from 38 feature parameters: 13 MFCC, 14 LPC, spectral
centroid, spectral spread, spectral kurtosis, spectral skewness,
zero crossing rate (ZCR), onset time, envelope slope, enve-
lope centroid, envelope spread, envelope kurtosis and enve-
lope skewness. The popular k-Nearest Neighbor algorithm
(k-NN) is used to the classification and decision task. The
metric used for the k-NN classifier is the euclidian distance
and the number of neighbors was set to 4, value determined by
empirical testing. Also, the components of the feature vector
are optimized by employing the Sequential Forward Selection
(SFS) algorithm. Therefore, the feature vector is reduced to
keep only the best discriminating factors for the instrument
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identification task. Grossly speaking, the SFS method selects
the best attributes from the score obtained by an objective
function. Unlike the PCA, it allows thinning down the set of
features available by keeping only the most significant ones.
This has the advantage to bring out the features most likely
to have an impact on the system and therefore by provide a
better understanding of the phenomenon.

3.3. Proposed system

3.3.1. Chromagram estimation

Chromagram is defined as the whole spectral audio informa-
tion mapped into one octave. Each octave is divided into 12
bins representing each one semitone. The same strategy based
on instantaneous frequency (IF), presented in [11], is adopted
in this work to compute the features chroma. The audio sig-
nal, with sampling frequency of 11025 Hz, is split up into
frames (1024 points) interlaced over 512 points. Motivation
behind the IF is to track only real harmonics. Figure 1 il-
lustrates the chroma obtained for two instrument playing two
different notes. We note that the tonal information of each
note is captured, however, no information on the type of in-
strument is taken into account.

3.3.2. Chromatimbre estimation

Each two-dimensional chroma matrix is associated with time
axis and bin frequency axis (semitone note). We utilize the
contour function of MATLAB, which determines 10 contours
levels by using a linear interpolation. Each contour track-
ing represents the intensity variation with respect to a fixed
threshold for yielding a segmentation of chromagram repre-
sentation (image) producing several regions. Hence, contours
delimiting the frontiers give some description equivalent to
the acoustical scene auditory activity. To deal with variability
level, all contours are set to the same intensity. This is similar
to transforming a color image to black and white. This binary
encoding approximation is used just to accelerate and facili-
tate the continuation of this exploratory study [12]. Fig. 2 and
fig. 3 illustrate chromatimbre representation with only one
contour for flute, piano, violin and trumpet instruments play-
ing different tones. According to geometrical shape contours,
it is clear that chroma shows a great energy concentrated at
small interval centred at bin number 4 and 11 for different
note modes (C4, C6, G5, and G6). The contours represen-
tation in Fig. 2 and fig. 3 with the same instrument, exhibits
rather than the tonal content, a particular pattern shape as-
sumed to characterize the timbre information. Illustrations
beside pattern shapes seem to keep and conserve the same
geometrical propriety when an instrument played different
notes. Pizzicato is especially clearly visible and there is no
ambiguity to distinguish sustained instruments from pizzicato
instruments. The chromatimbre of the accordion is especially
easy to recognize because of its unique signature. However,

the shapes of chromatimbre are not trivial and it would be dif-
ficult to enumerate all the characteristics that can have each
instrument. In fact, the chromatimbre can be exploited to
extract many information as the envelope, amplitude modu-
lation, frequency modulation, attack time, sustain and release
of the note. As a first investigation, we assume the representa-
tion of chroma as a 2D image, where the points corresponding
to the contour are set to 1 and other points to 0. The problem
is therefore how to characterize each instrument by describ-
ing the geometric contours of its chromatimbre. This can be
achieved by applying the moment invariants discussed in the
next sub-section.

Fig. 1. Description by Chromagram: Only tonal information
is preserved

Fig. 2. Description by the proposed chromatimbre: flute and
trumpet instruments playing C4, G4 and G6 notes.
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Fig. 3. Description by the proposed chromatimbre: piano and
violin instruments playing C4 and G6 notes.

3.3.3. Invariant moments

Invariant moments are recognized as a classical technique for
pattern recognition during the last years. They were intro-
duced by [13], who derived seven moments invariant to trans-
lation, rotation and scale of 2D objects:

I1 = η20 + η02 (1)

I2 = (η20 − η02)2 + (2η11)2 (2)

I3 = (η30 − 3η12)2 + (3η12 − η03)2 (3)

I4 = (η30 + η12)2 + (η12 + η03)2 (4)

I5 =(η30 − 3η12)(η30 + η12)((η30 + η12)2−
3(η12 + η03)2) + (3η21 − η03)((η21 + η03)

(3(η30 + η12)2 − (η12 + η03)2)

(5)

I6 =(η20 − η02)((η30 + η12)2 − (η20 + η03)2+

4η11(η30 + η12)(η21 + η30))
(6)

I7 =(3η21 − η03)(η30 + η12)((η30 + η12)2−
3(η12 + η03) − (η30 − 3η12)(η21 + η03)

(3(η30 + η12)2 − (η12 + η03)2))

(7)

where

ηij =
µij

µ
(1+ i+j

2 )
00

(8)

is the normalized moment with i+ j ≥ 2, and:

µpq =
∑
x

∑
y

(x− x̄)p(y − ȳ)qI(x, y) (9)

is the central moment of order (p, q) and I(x, y) is the
pixel intensity level at (x, y) coordinates.

4. RESULTS AND DISCUSSION

The best approach uses 10 normalized contours of a 24 bins
chromagram giving a recognition rate of 86.85% (see Ta-
ble 2). The reference system gives a score of 97.50% (see
Table 3). As the chromatimbre technique utilizes only 7 fea-
ture parameters for the feature vector, the reference system
deals with 38 feature parameters which is more than 5 times
the number of parameters in the chromatimbre system. A
feature selection algorithm has also been applied in the ref-
erence system, forcing more complex calculations to reduce
the feature vector dimensions.

Separation of pizzicato instruments from sustained instru-
ments is trivial using only the shape of chromatimbre. Visual
discrimination of the two classes yields near perfect results as
the human eye can easily distinguish between the two charac-
teristic shapes of pizzicato and sustained chromatimbres. On
the other hand, extracting feature parameters from the chro-
matimbre is more difficult and needs more sophisticated tech-
niques than the invariant moments. Image processing tech-
niques could be used in conjunction with the chromatimbre
of the instruments in order to extract features from the audio
signals.

5. CONCLUSION

A new proposal has been examined and evaluated using the
chromatimbre with invariant moments as feature parameters.
The importance of chromatimbre is that it can encode instru-
ment timbre information in conjunction with its tonal con-
tent. Comparison with a reference system revealed that this
approach gives results almost similar without having to op-
timize the parameter vector and consider the ideal classifica-
tion strategy. Chromatimbre has promising avenues in a hi-
erarchical classification system where the articulation defines
a tree level. New parameterization techniques could also be
constructed from the chromatimbre representation that wields
better results with other hierarchical levels.

Table 2. Best confusion matrix obtained from chromagram
parameters.

86,85% pizzicato sustained
pizzicato 1861 381
sustained 500 3956
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Table 3. Confusion matrix of reference system.
97,50% pizzicato sustained

pizzicato 2233 9
sustained 8 4448
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