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ABSTRACT

We consider channel modeling for transmission over body-
area networks. Due to the difficulty in assessing an accurate
statistical model valid for multiple scenarios, we advocate a
technique that favors robustness. Our calculations, which fol-
low in the footsteps of the results in [9], and generalize them,
allow us to determine the variation of a performance metric
when the nominal statistical distribution of fading is replaced
by the worst distribution within a given Kullback–Leibler di-
vergence from it. The sensitivity of the performance metric to
the divergence from the nominal distribution can be used as
an indication of the model robustness. This concept is applied
by evaluating error probability for binary uncoded modulation
and outage probability—the first parameter is useful to assess
system performance with no error-control coding, while the
second reflects the performance when a near-optimal code is
used.

Index Terms— Body-area network, Channel model,
Channel uncertainty, Coding and modulation.

1. INTRODUCTION AND MOTIVATION OF THIS
WORK

Body-area networks (BANs), which use the human body to
support communication using low-power wireless sensor net-
work technology, of late have been attracting a considerable
interest [8]. Now, modeling the transmission channel to al-
low reliable communication through a BAN is a challeng-
ing problem. First, communication takes place on different
types of links, depending on the body parts to which transmit
and receive antennas are attached, e.g., trunk-to-trunk, trunk-
to-head, trunk-to-hand [1], on where the hardware is located
(body-to-body, off-body, on-body, and in-body links [6]), and
on antenna type and orientation, body size, location, and pos-
ture [7]. In addition, as observed in [6], propagation in on-
body links “may be a combination of surface wave, creep-
ing wave, diffracted waves, scattered waves, and free space
propagation, depending on the antenna positions and the body
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postures” (see also [8] and references therein). Refs. [5, 11]
describe analyses and measurements leading to a lognormal-
distribution model for slow fading, and a Rice-distribution
model for fast fading in single-link communication. The use
of multiple-input, multiple-output (MIMO) systems in BANs
has been first advocated in [12], and MIMO BAN channel
models were discussed in [6] and [7].

Even if adaptive techniques are used to adjust modulation
and coding to the changing environment, reliable mathemati-
cal models for the transmission channel are called for, which
are difficult to obtain because of the variations of the environ-
ment in which the transmission is taking place. In this paper,
we argue that the design of modulation and coding schemes
in BANs should be based on their robustness to uncertainties
of channel model. Specifically, we study how performance
varies as the channel model runs through an uncertainty set
surrounding the nominal one. We do this, following in the
footsteps of [9], by examining the system performance as a
function of the distance between the nominal distribution of
channel statistics and the worst distribution in the uncertainty
set. Based on this concept, the robustness of system design to
channel modeling can be assessed.

To measure the distance of a probability measure P from
a reference measure P0, we use the Kullback–Leibler (K–L)
divergence D(P ‖P0) [4, p. 18 ff.].1 The solution of an opti-
mization problem allows one to determine the worst distribu-
tion within a given K–L divergence from the nominal distri-
bution, and assess the system performance when the former
is used in lieu of the latter (see Fig. 1). A numerical exam-
ple of K–L divergence is provided in Fig. 2, which shows the
values of the divergence between Rayleigh density and Rice
density [2, pp. 27-29] with parameter K (as usual, K denotes
the ratio between the signal power in the dominant component
and the scattered power).

The mathematical problem of evaluating a performance
metric vs. the K–L divergence between the nominal and the
worst distribution is described and solved in next section.

1The K–L divergence is always positive, except when P = P0. Yet, it is
technically not a distance—it is not symmetric, as generally D(P ‖P0) �=
D(P0 ‖P). Thus, it can be interpreted as a “directed distance” between two
probability models. A discussion of this point can be found in [9, Section
IV].
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uncertainty set contains 
the true distribution 

Fig. 1. Illustration of the search for the worst distribution
within an uncertainty set of distributions P having a K–L di-
vergence ≤ d from the nominal distribution P0.
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Fig. 2. K–L divergence D(fK‖f0) between the Rayleigh den-
sity f0 and the Rice density with parameter K, denoted fK .

This method is applied in Section 3 to the evaluation of
two performance metrics, viz., error probability for binary
uncoded modulation and of outage probability—the first pa-
rameter being useful to assess system performance with no
error-control coding, the second reflecting the performance
when a near-optimal code is used.

2. THE OPTIMIZATION PROBLEM

A nominal probability measure P0 is assumed for a chan-
nel random parameter X . Assume that the actual probabil-
ity measure P has a K–L divergence D(P ‖P0) from P0 less
than or equal to a given value d. If the system performance
is evaluated as the expected value of a known function h of
the random variable X , following [9] (see also [13] and ref-
erences therein) we consider the solution of the optimization

problem

(P ′) max
P

Eh

s.t. D(P ‖P0) ≤ d

i.e., the search for the distribution whose K–L divergence is
within d from the nominal distribution P0 and yields the max-
imum (i.e., worst) value of the cost function Eh.

Introducing the inaccurately modeled random variable X
and the probability density functions f , f0 corresponding to
measures P, P0, respectively, we may explicitly rewrite prob-
lem (P ′) in the equivalent form

(P ) max
f

∫
h(x)f(x) dx

s.t.
∫

log
f(x)

f0(x)
f(x) dx ≤ d

∫
f(x) dx = 1

(Condition f(x) ≥ 0 should be added unless automatically
satisfied by the solution of (P ).)

Since the objective of (P ) is linear and the constraint is
convex, then (P ) is a convex optimization problem [9, p.
6834]. The Lagrangian of (P ) is given by

L =

∫
h(x)f(x) dx (1)

− ν−1

(∫
log

f(x)

f0(x)
f(x) dx− d

)
− μ

(∫
f(x) dx− 1

)

Taking the functional derivative of L with respect to f , the
Karush–Kuhn–Tucker (KKT) conditions can be written in the
form

h(x)− ν−1

(
log

f(x)

f0(x)
+ 1

)
− μ = 0 (2a)

∫
f(x) dx = 0 (2b)

ν−1

(∫
log

f(x)

f0(x)
f(x) dx− d

)
= 0 (2c)

ν−1 ≥ 0 (2d)

For ν > 0 the maximum is achieved at the boundary
(see (2c)). In this case, (2a) and (2b) yield the form of
the optimizing f(x):

f�(x) =
eν

�h(x)f0(x)

ξ(ν�)
(3)

where
ξ(ν) �

∫
eνh(x)f0(x) dx, (4)

ν� is the solution of

ν
ξ′(ν)
ξ(ν)

− log ξ(ν) = d, (5)
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and

ξ′(ν) � dξ(ν)

dν
=

∫
h(x)eνh(x)f0(x) dx (6)

The resulting minimum value of Eh, denoted pmax, is given
by

pmax =
ξ′(ν�)
ξ(ν�)

(7)

that is, pmax is the slope of the logarithmic derivative of ξ(ν)
at ν = ν�.

Define p0 �
∫
h(x)f0(x) dx, and observe that, since

ξ(0) = 1 and ξ′(0) = p0, (5) has the solution ν� = 0
for d = 0, which implies that d = 0 yields pmax = p0,
as it should be. In addition, it can be proved that pmax(d)
increases with d.

2.1. A special case

An important special case, examined in [9], occurs when h(x)
turns out to be the indicator function of an interval I:

h(x) =

{
1, x ∈ I

0, otherwise (8)

so that
Eh(X) = P[X ∈ I] (9)

In this case, we have explicitly

ξ(ν) = eν
∫
I

f0(x) dx+

∫
Ī

f0(x) dx (10)

= p0e
ν + (1− p0) (11)

= 1 + p0(e
ν − 1) (12)

where

p0 �
∫
I

f0(x) dx, (13)

and also
η(ν) = p0e

ν (14)

Thus,

pmax =
p0e

ν�

1 + p0(eν
� − 1)

(15)

where ν� is the solution of

− log (1 + p0(e
ν − 1)) +

p0νe
ν

1 + p0(eν − 1)
= d (16)

For d = 0 the solution is ν� = 0, which yields pmax = p0.
When d = log(1/p0) we have pmax = 1, and ν� → ∞.

Fig. 3 shows the behavior of pmax vs. the value of the K–L
divergence d. As stressed in [9], in the special case examined
in this section the nominal distribution enters pmax only via
the nominal probability p0.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Fig. 3. pmax vs. d. Here p0 = 0.1.

3. APPLICATIONS

3.1. Binary error probability

The general expression for the error probability of uncoded
binary antipodal modulation with equally likely signals, un-
der the assumption of ergodic fading with amplitude R, addi-
tive white Gaussian noise with power spectral density N0/2,
and perfect channel state information at the receiver, is

p = P[
√
R2E+ n < 0] (17)

= ERQ
(
R
√
2 snr

)
(18)

where snr � E/N0. With Rayleigh fading, we have

p0 =
1

2

[
1−

√
snr

1 + snr

]
(19)

The resulting variation of pmax with d = D(fK‖f0) and fK ,
f0 as in Fig. 2 is illustrated in Fig. 4. Fig. 5 shows the evolu-
tion of f�(x) with d for snr = 0 dB.

3.2. Outage probability

On a nonergodic channel affected by fading with random gain
R and additive white Gaussian noise, the information outage
probability, i.e., the probability that the transmission rate ρ
bits per channel use exceeds the instantaneous mutual infor-
mation of the channel, is given by [2, Chapter 4]

pout = P[log2(1 +R2snr) < ρ] (20)

With a nonergodic channel, this is the information-theoretical
rate limit which cannot be exceeded by the word error prob-
ability of any coding scheme, and hence can be utilized for
estimating the error probability of coded systems [3, 10].
From (20) we obtain

pout = P[R ∈ I] (21)

3
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Fig. 4. pout vs. d for binary error probability with snr= 0 dB,
snr= 10 dB, and snr= 20 dB.
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Fig. 5. “Worst” probability density functions f�(x) as in
Fig. 4 with snr = 0 dB for various values of d.

where

I =
(
0,
√

(2ρ − 1)/snr
)

In the special case of Rayleigh-distributed fading, i.e., a prob-
ability density function of R given by

f0(r) = 2re−r2 , r ≥ 0

we obtain

pout,0 = 1− exp[−(2ρ − 1)/snr]

We can evaluate the robustness of outage probability to fading
model uncertainty using the previous theory, and in particular
Section 2.1 and Fig. 3.

4. CONCLUSIONS

Efficient channel modeling for transmission in body area net-
works is a challenging task due to the difficulty in assessing an
accurate statistical model valid for multiple scenarios. We ad-
vocate a scheme that favors robustness in terms of coding and
modulation. To study robustness, we determine the variation
of a performance metric when the nominal statistical distri-
bution of fading is replaced by the worst distribution having
a given Kullback–Leibler divergence from it. This concept
is applied to two performance metrics, viz., error probability
and outage probability.
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