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ABSTRACT 

Threshold decomposition is a technique commonly used to 

produce multitones in multilevel halftoning.  It separates an 

input image nonlinearly into energy planes, halftones them 

sequentially with a binary halftoning algorithm, and finally 

combines the binary halftoning results to produce a 

multitone.  As planes are handled sequentially from the 

brightest layer to the darkest layer under a stacking 

constraint, there are biases to favor the brighter layers and 

the darker features of the image. This in turn makes the 

resultant multitone impossible to report the original image 

ideally. This paper proposes a solution to eliminate these 

biases and improve the visual quality of a produced 

multitone. 

Index Terms — Halftoning, multilevel halftoning, 

multitoning, error diffusion, multiscale error diffusion 

1. I�TRODUCTIO� 

In the past few decades, the printing technology has been 

advanced significantly such that printers nowadays can 

produce outputs of more than two intensity levels. 

Accordingly, advanced digital halftoning technique is 

required to convert a gray-scale image into a multilevel 

output for being printed. The corresponding conversion 

process is generally referred to as digital multitoning.   

Various studies have reported that a straight forward 

extension of conventional binary halftoning algorithms did 

not work properly to produce multilevel output of good 

quality especially when the output levels are limited to a 

few. In a region over which intensity values gradually 

change, all intensity levels are quantized to a few output 

levels in the multitone. When the intensity difference of the 

few output levels is visually remarkable, the multitone fails 

to reproduce the gradual variation in gradation and there are 

banding artifacts. 

Threshold decomposition (TD) is a technique now 

widely used with a binary halftoning algorithm to produce 

multitones[1-3]. This technique separates an input image 

nonlinearly into several energy planes, halftones them 

sequentially with a binary halftoning algorithm, and finally 

combines the binary halftoning results to produce a 

multitone. 

Different energy planes carry different amount of 

energy. To eliminate the banding artifacts, the energy planes 

are halftoned from the one of the highest energy to the one 

of the lowest energy one by one subject to a stacking 

constraint [1-3]. In particular, if a location in a plane of 

higher energy is assigned a black pixel in its binary output, 

black pixels must also be assigned to the corresponding 

locations in the binary outputs of the planes of lower energy. 

This stacking constraint confines the pixel assignment in the 

binary outputs of the planes of lower energy. The lower the 

energy of a plane, the more restricted we can assign a white 

pixel. Since the final multitone is produced by combining 

the binary halftones of all planes, restricting the positions of 

white pixels in some binary halftones implies restricting the 

positions of the bright pixels in the final multitone. In other 

words, pixel assignments have a bias to favor darker dots. 

Consequently, we may not be able to put bright dots at the 

right positions in the multitone to preserve bright features in 

the original gray level image.  

Another observation is that in this conventional 

framework energy planes are separately processed. When an 

energy plane is processed, all the planes of lower energy are 

not taken into account. It is impossible for one to have a 

complete view on the entire multitoning process when 

halftoning individual energy planes. From that point of 

view, the quality of the multitone cannot be globally 

optimized.   

In this paper, we propose a new approach to do 

multitoning based on the idea of TD. Algorithms developed 

based on this approach are able to improve the output 

quality by taking all energy planes into account at any stages 

of multitoning and eliminating the aforementioned bias. A 

multitoning algorithm for producing 3-level multitones is 

presented in this paper as an example to illustrate the idea of 

the proposed approach. 

2. THRESHOLD DECOMPOSITIO� 

This section provides a brief review on the framework of 

conventional TD-based multitoning algorithms and 

elaborates the limitations of this conventional framework.  

Consider the case that we want to convert a gray–level 

image X to a 3-level image Y.  The pixel values of X are 

bounded in [0,1], where 0 and 1 denote the minimum 
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(black) and the maximum (white) intensity levels 

respectively,  while the pixel values of Y are confined to be 

0, 0.5 or 1. Without loss of generality, we assume that the 

size of images X and Y is 2
k
×2

k
, where k is a positive 

integer. For reference, I(m,n) denotes the pixel value of 

image I at position (m,n).   

Figure 1 shows the framework of a conventional TD-

based 3-level multitoning algorithm. First, the input image X 

is decomposed into two energy planes, each of which is 

denoted as X1 and X2, such that we have 

2
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As suggested by Suetake [1], X1 and X2 can be determined 

as 
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where X0(m,n) = 1 for all (m,n). The decomposition curves 

plotted in Figure 2 shows how X1(m,n) and X2(m,n) vary 

with X(m,n). From the curves, one can derive that energy 

plane X1 always carries more energy than energy plane X2 

after decomposition. 

After layer decomposition, X1 and X2 are halftoned with 

a binary halftoning algorithm sequentially subject to a 

stacking constraint. The 3-level multitone is then obtained 

by averaging Y1 and Y2, the binary halftones of X1 and X2, as 

2

),(),(
),(

nmYnmY
nmY 21 +
=    for  m,n=0,1,…,2

k
-1  (3) 

Note that any binary halftoning algorithm can be applied to 

produce Y1 and Y2, but the selection of the algorithm affects 

the quality of the final multitoning result.  

As mentioned before, as energy planes are sequentially 

processed from the one of the highest energy to the one of 

the lowest energy subject to a stacking constraint, the 

locations of bright pixels in the final multitone are more 

restricted than those of dark pixels, and it makes the 

multitone difficult to preserve bright image features. Note 

that reversing the processing order to process X2 first does 

not help. There will be another stacking constraint to satisfy 

and it just sacrifices the dark image features to preserve the 

bright image features. 

Another observation is that not all energy planes are 

taken into account when processing a particular energy 

plane. The binary halftoning processes for individual energy 

planes cannot be jointly optimized simultaneously. As a 

consequence, the halftones produced for individual energy 

planes can be at most optimized for their associated planes 

only. As the multitoning output is produced by combining 

the halftones, its quality cannot be globally optimized.   

In [4], Wong et al. proposed to process the brightest and 

the darkest energy planes in an interleaving manner to 

reduce the bias to either white or black dots. However, it 

still cannot solve the problems from the root. Obviously, in 

order to solve these problems, energy planes should not be 

processed one by one sequentially.  Instead, they should all 

be taken into account at the same time when determining the 

output intensity value of a specific pixel in the final 

multitone. In the following section, we will show how this 

can be done with our proposed approach.  

 
Figure 1.  The framework of conventional TD-based 3-level multitoning 

algorithms 

 
Figure 2.  The decompositon curves for 3-level multitoning 

3. ALGORITHM 

In the proposed framework, the 3-level multitoning process 

is considered as a process in which one puts white dots and 

black dots onto a gray substrate. For each pixel in the 

multitone, its intensity value, say Y(m,n), is determined by 

evaluating both  X1(m,n) and X2(m,n) simultaneously at the 

time the pixel is selected to assign a value. In such an 

arrangement, there is no bias to favor either white or black 

dots and hence the aforementioned problems can be 

resolved automatically.  

To start the process, one has to estimate the total budgets 

of black dots and white dots that should be put on the gray 

substrate. The budgets can be determined based on the 

working principle of conventional TD-based multitoning 

algorithms as follows. According to the rules, the white and 

black dot budgets, which are defined to be the expected total 

numbers of white and black pixels, for the binary halftones 

Y1 and Y2 should be given by 

∑

∑
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=

),(
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nmXYforbudgetdotblack

nmXYforbudgetdotwhite

 

for  d=1,2 (4) 
The stacking constraint requests that Y2(m,n)=0 

whenever Y1(m,n)=0. Under the stacking constraint and the 

connection given by eqn. (3), Y1(m,n)=0 is the necessary and 

sufficient condition for  Y(m,n)=0. Hence, the black dot 

budget for the 3-level multitone Y is the same as the black 

dot budget for Y1 and is given by 

∑ −=
),(

)},(1{,

nm

1b nmXBYforbudgetdotblack    (5) 

Similarly, the connection given by eqn. (3) and the 

constraint that Y1(m,n)=1 if Y2(m,n)=1 make Y2(m,n)=1 be 
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the necessary and sufficient condition for Y(m,n)=1. 

Accordingly, the white dot budget for the 3-level multitone 

Y is the same as the white dot budget for Y2 and is given by 

∑=
),(

),(,

nm

2w nmXBYforbudgetdotwhite            (6) 

As a gray substrate, Y(m,n) are initialized to be 0.5 for 

all (m,n). With the dot budgets on hand, pixels in Y are 

selected and assigned white or black dots by changing 

values of Y(m,n) to 1 or 0 one by one until all white and 

black dot budgets are used up. The implementation is 

basically a 2-step iterative process adapted from the one 

used in feature-preserving multiscale error diffusion 

(FMED) [5].  

The first step of the iterative process is to select a pixel 

to put a dot. The selection is based on a complex energy 

plane E which is initialized by combining energy planes X1 

and X2 as follows. 

)),(1(),(),( nmXjnmXnmE 12 −+=    for all (m,n)  (7) 

where 1−=j . It is updated at every iteration to guide us 

to select the most currently critical pixel in Y to put a dot. 

Starting with the energy plane E as the region of interest, 

we repeatedly divide the region of interest into nine 

overlapped sub-regions of equal size and select the sub-

region whose cost is maximum to be the new region of 

interest. The cost of a region is defined as  

2
)0),max(Im()0),max(Re( RRR CjCJ +=    (8) 

where )Re( RC  and )Im( RC  are, respectively, the real and 

the imaginary parts of the complex value defined as 

),(),(

),(

vuMvuEC

Rvu

R ∑
∈

= ,  R denotes the set of pixels in 

the region and M(u,v) is a mask defined as 



 =

=
otherwise

vuYif
vuM

0

5.0),(1
),(   (9)  

Note that the physical meaning of Y(u,v)=0.5 is that pixel 

(u,v) in Y has not yet been selected to put either a white or 

black dot. We repeat the above procedures to update the 

region of interest until a pixel location is reached.  

In the conventional TD framework, ),( nmX 2  and 

)),(1( nmX1− , respectively, reflects the appropriateness of 

assigning 1 (a white dot) to Y2(m,n) and 0 (a black dot) to 

Y1(m,n). The closer to 0 their values, the less appropriate the 

assignments are. In other words, the larger the value of 
22 ),()),(1( nmXnmX 21 +− , the more appropriate to make 

either Y2(m,n)=1 or Y1(m,n)=0. As Y2(m,n)=1 and Y1(m,n)=0 

lead to Y(m,n)=1 and Y(m,n)=0 respectively, it implies that 

Y(m,n) should no longer be 0.5. Adjusting the initial value 

of Y(m,n) is equivalent to putting a dot (either black or 

white) onto the gray substrate at location (m,n). The 

searching procedures in this step guide us to search for the 

most appropriate location to put a dot.   

The second step is to assign an appropriate value to the 

pixel selected in the first step and update energy plane E 

accordingly. Let the location of the selected pixel be (p,q). 

The intensity value of the dot assigned to Y(p,q) is 

determined as 



 >−>

=
otherwise

BandqpXqpXif
qpY

w12

0

0),(1),(1
),(  (10) 

After the dot assignment, the corresponding dot budget for Y 

is reduced by 1.  

Based on eqn. (3), we have ),(),( qpYqpY 21 = = ),( qpY  

if ),( qpY =0 or 1. Energy planes X1 and X2 should then be 

updated accordingly to update the complex energy plane E 

for selecting another pixel in Y to put a dot in next iteration. 

In particular, for each energy plane Xd, where d∈ {1,2}, the 

difference between Yd(p,q) and Xd(p,q) is diffused to 

Xd(p,q)’s neighbors to update energy plane Xd as follows. 

( )
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where ),(' nmX d  and ),( nmX
d  are, respectively, the 

values of pixel (m,n) in energy plane Xd after and before the 

error diffusion process, Yd(p,q) is the value assigned to pixel 

(p,q), ws,t  for (s,t)∈Ω is a filter weight of a non-causal 

diffusion filter with support Ω, and  

( )∑
Ω∈−−

−− ⋅=
),(

, ),(

qnpm

qnpm nmMwS    (12) 

The two steps are repeated until all black and white dot 

budgets for Y are exhausted. Since both steps are carried out 

based on the complex energy plane E and the whole 

iterative process complies with the framework of FMED, 

the process is referred to as complex plane MED in this 

paper. Figure 3 shows the flow of the proposed multitoning 

method. 

 
Figure 3.  The flow of the proposed method 

 

4. SIMULATIO� RESULT 

Simulations were carried out to evaluate the performance of 

the proposed method with a set of nine 256-level testing 

images of size 512×512 each. In its realization, a 5×5 

noncausal diffusion filter with filter coefficients  





 ≠+=≤+=

otherwise

tsanddtsifts
w ts

0

0||||2|||,|/1 22

, (13) 
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was exploited as the default diffusion filter in the 

simulation. When S=0, the value of d is increased by 1 

gradually to increase the filter support until S≠0. For 

comparison, the performance of four TD-based multitoning 

algorithms ([1-4]) was also evaluated in the simulations. 

Table 1 shows the performance of various algorithms in 

terms of Mean Structural Similarity Index (MSSIM) [6]. 

MSSIM is an improved version of Universal Objective 

Image Quality Index (UQI) [7] which can be used to 

measure the information loss after multitoning. The MSSIM 

measurement is sensitive to structural information 

degradation which reflects the difference between the 

original image and its multitoning results. The higher the 

value of MSSIM, the closer to the original a multitoning 

output is, which implies a better quality of the output.  

Figure 4 shows some 3-level halftoning results obtained 

with different evaluated algorithms for visual comparison. 

One can see that the proposed algorithm can render the 

  
Original Proposed 

  
Suetake et al.[1] Rodriguez et al. [2] 

  
Fung et al. [3] Wong et al. [4] 

Figure 4. Simulation results of various multitoning algorithms 
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texture (e.g. the patterns on the tablecloth, the scarf and the 

trousers etc.) accurately. Both bright and dark spatial 

features are reported faithfully in the output of the proposed 

algorithm. Figure 5 shows the multitones obtained with 

various algorithms for a ramp input. 

TABLE I.  MSSIM PERFORMANCE OF VARIOUS ALGORITHMS 

Image Ours [1] [2] [3] [4] 

airplane      0.1045 0.0747 0.0732 0.1023 0.1016 

barbara       0.1866 0.1327 0.1229 0.1801 0.1834 

boat          0.1219 0.0829 0.0770 0.1167 0.1174 

girl           0.0591 0.0367 0.0348 0.0576 0.0585 

goldhill      0.1104 0.0663 0.0612 0.1059 0.1080 

lena          0.0916 0.0597 0.0561 0.0874 0.0886 

man           0.1161 0.0777 0.0717 0.1111 0.1133 

mandrill      0.2736 0.1875 0.1701 0.2686 0.2719 

peppers  0.0969 0.0590 0.0560 0.0931 0.0972 

Average 0.1290 0.0864 0.0803 0.1248 0.1267 

 

5. CO�CLUSIO�S 

Threshold decomposition is a technique widely used with a 

binary halftoning algorithm to produce multitones. It 

separates an input image nonlinearly into several energy 

planes and processes the energy planes sequentially to 

produce a multitone. This unavoidably introduces a bias to 

favor brighter energy planes and a bias to favor darker 

features of the input image during multitoning. In this paper, 

we proposed a solution which allows us to handle all energy 

planes simultaneously to eliminate the biases. Both dark and 

bright spatial features of the input images can then be 

faithfully preserved in their multitoning outputs. Simulation 

results showed that the proposed method can give a better 

result than conventional TD-based multilevel halftoning 

algorithms[1-3] in both subjective and objective measures.  
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Figure 1.  Simulation results of a ramp image 
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