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ABSTRACT
In this paper, we extend the recently introduced Maximum Like-
lihood Linear Regression (MLLR) super-vector based m-vector
speaker verification system to a multi-class MLLR m-vector system.
In the conventional case, global class MLLR transformation is es-
timated with respect to Universal Background Model (UBM) for a
given speech data, which is then used in the form of super-vector for
m-vector system. In the proposed system, Gaussian mean vectors of
the UBM are first clustered into several classes. Then, MLLR trans-
formations are estimated (of a speech data) for each class, and are
used in the form of super-vectors for speaker characterization using
the m-vector technique. We consider two clustering approaches:
one is based on the conventional K-means and the other is proposed
based on Expectation Maximization (EM) and Maximum Likelihood
(ML). Both systems yield better performance than the conventional
m-vector system and allow for multiple MLLR transforms without
additional temporal alignment of the data with respect to UBM.
Furthermore, we show that, contrary to conventional K-means, the
proposed clustering is not affected by the random initialization, and
also provides equal or comparable system performance. The system
performances are shown on NIST 2008 SRE core condition over
various tasks.

Index Terms— Multi-class m-vector, Statistical clustering al-
gorithm, MLLR super-vector, UBM, Speaker verification

1. INTRODUCTION

During the last decade, different high-dimensional features have
been proposed for use in Speaker Verification (SV) systems, among
which is the Maximum Likelihood Linear Regression (MLLR) super-
vector [1, 2, 3, 4, 5, 6]. In the MLLR approach, an affine transforma-
tion is estimated with respect to a Speaker Independent (SI) model
for a given speech segment/utterance. Then, the MLLR transforma-
tion matrix is represented in the form of a super-vector and used as
a feature for speaker modeling. Depending on the SI model, speaker
verification systems based on MLLR super-vector can be broadly
divided into two categories, i.e. Hidden Markov Models (HMMs)
based [1, 4, 5] and Universal Background Model (UBM) based
[3, 6]. In the first approach, each speech utterance is automatically
transcribed and aligned against the states of the phonetic models.
Then, one or more pre-defined phonetic class-specific MLLR trans-
formations are estimated using this alignment. It is popularly known
as Automatic Speech Recognition (ASR) based MLLR SV system.
In the former case, commonly, a single (or global) class MLLR
transformation is calculated with respect to the UBM without any
speech transcription. The limitation of this later approach is that
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the UBM does not model the temporal successions of phonemes,
and ASR based MLLR SV systems perform better than UBM based
ones [5]. However, the main drawback of ASR based systems is
the complexity of HMM modeling which makes the estimation of
MLLR transformations computationally heavy, while UBM system
usually consists 512-2048 Gaussian mixture components. There-
fore, UBM based MLLR SV systems are better suited for real time
applications.

MLLR super-vectors were commonly associated with a Support
Vector Machines (SVM) classifier for speaker modeling [1, 2, 4] but
alternative approaches have been recently proposed. Following the
m-vector technique [5, 6], speakers are represented by a uniform seg-
mentation of their MLLR super-vectors. Each segment of the MLLR
super-vector is called an m-vector. The MLLR super-vector is de-
rived from a global MLLR transformation which is estimated with
respect to the UBM. The m-vector technique was shown to extract
more speaker relevant information from the speaker MLLR super-
vector than the conventional way of using the full super-vectors. It
also gives promising performance when compared to a standard i-
vector system in speaker verification. Later, the effectiveness of the
m-vector technique has also been shown in [5] for speaker verifica-
tion with ASR based MLLR super-vectors.

Our objective in this paper is to extend the conventional UBM
based global (i.e. single class) MLLR m-vector system into a UBM
based multi-class MLLR m-vector system, where Gaussian com-
ponents of the UBM are first clustered into different groups. An
MLLR transformation is estimated with respect to each cluster for a
given speech segment. Finally, MLLR transforms are used as super-
vectors for speaker characterization with the m-vector technique. We
consider two clustering approaches: the first one is based on the con-
ventional K-means and the other one relies on a proposed statisti-
cal clustering algorithm based on the concepts of Expectation Maxi-
mization (EM) and Maximum Likelihood (ML). The salient features
of the proposed algorithm are that:

• the clustering is very robust to random initialization com-
pared to conventional K-means;

• the performances are either equal or comparable to the best
ones obtained with several experimental runs of K-means.

Compared to other multi-class MLLR based speaker verifica-
tion found in the literature [1, 2, 4, 5], our system did not use any
phonetic knowledge for the multi-class MLLR transformation. The
system performance are shown on NIST 2008 SRE core condition
over various tasks. Experimental results show that this multi-class
MLLR m-vector system performs better than the conventional m-
vector system.

The paper is organized as follows: Sec. 2 describes the MLLR
super-vector concept. Sec. 3 describes the m-vector technique. The
proposed system is described in Sec. 4. Sec. 5 describes the ses-
sion variability compensation and scoring. Experimental setup is
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presented in Sec. 6. Sec. 7 describes results and discussion, before
the conclusion in Sec. 8.

2. MLLR SUPER-VECTOR

MLLR [7] is a commonly used for speaker adaptation in Automatic
Speech Recognition (ASR) systems. It estimates an affine transfor-
mation with respect to Speaker Independent (SI) HMMs for a given
speech segment in the Maximum Likelihood (ML) sense. The affine
transformation is then applied to the Gaussian mean vectors of the
SI model to get the speaker adapted model parameters. The MLLR
transformation (W, b) can be expressed as,

µ̂ = Wµ+ b; Σ̂ = Σ (1)

where µ and Σ indicates respectively, the Gaussian mean vectors
and covariance matrices of the SI model, and µ̂ and Σ̂ are the adapted
speaker model parameters. In our experiments, a UBM is considered
as the SI model for MLLR transformation. Estimation of the MLLR
transformation W given the feature vectors X = {x1, . . . xT } for
the rth speaker involves the following steps:

Step 1: Determine the probabilistic alignment, γj (t) of fea-
ture vector X with respect to UBM for the jth Gaussian as:

γj (t) = p(j|xt) =
ωjbj(xt)∑c
k=1 ωkbk(xt)

(2)

where c and bk indicate the number of Gaussians and density
function of kth Gaussian of the UBM, respectively.

Step 2: Compute the following two sufficient statistics for ith

components (dimension) of feature vectors,

K(i) =

c∑
j=1

T∑
t=1

γj(t)
1

σ2
ji

xi(t) µ
′
j (3)

G(i) =

c∑
j=1

1

σ2
ji

µjµ
′
j

T∑
t=1

γj (t) (4)

µj and σ2
ji are the jth mean and the ith component of jth

covariance matrix of UBM, respectively. The symbol (.)′ in-
dicates matrix transpose operation.

Step 3: ith row of the MLLR transformation of the rth

speaker is obtained as,

Wi = K(i)G(i)−1
(5)

Step 4: Repeat Step 2 to 3 upto feature vector dimension

MLLR super-vector is then formed by stacking the elements of
the MLLR transformation one by one [1], as illustrated in Fig. 1. The
bias b is not considered in our experiments since it does not provide
any significant system performance gain. We use 47 dimensional
feature vectors resulting in 47 ∗ 47 = 2209 dimensional MLLR
super-vectors.

3. M-VECTOR TECHNIQUE

In the m-vector technique [5, 6], speakers are represented by a uni-
form segmentation of their MLLR super-vectors using an overlapped
window. (As Eqn.(5), rows of MLLR transformation i.e. super-
vector is associated with the components of feature vectors.) Each

Adaptation
MLLR

Speech segment

UBM 

MLLR Super−vectorfor speaker, r

W
w11

w12

w13

for speaker, r; (W r
sup)

Fig. 1. Estimation of MLLR super-vector for the rth speaker with
respect to the UBM.

segment is called an m-vector as shown in Fig.2. A speaker is thus
characterized by several m-vectors which are processed separately
and hence constitute several sub-systems. Before scoring, m-vectors
are post-processed for session variability compensation; m-vectors
of the test utterance are then scored against the claimant specific m-
vectors obtained during the training phase.

W r
sup [1×2209]

[1× 500]

mr
1 mr

2

[1× 500]

sub-sys1 sub-sys2

Fig. 2. m-vector extraction for the rth speaker from his/her MLLR
super-vector using an overlapped window of 500 elements.

While dimension of MLLR super-vector is not integer divisible
by window size, we extract an additional m-vector by putting the
window at the end of the super-vector to cover the remaining ele-
ments.

4. UBM-BASED MULTI-CLASS M-VECTOR SYSTEM

In this section, we describe the proposed UBM based multi-class
MLLR m-vector system. We consider two clustering algorithms for
multi-class MLLR transformation, resulting in two systems.

4.1. Multi-class MLLR m-vector system with statistical cluster-
ing

In this case, Gaussian mean vectors of the UBM are first clustered
using the concept of Expectation Maximization (EM) [8] and Maxi-
mum Likelihood (ML) as described in Algorithm 1.

Algorithm 1: Proposed statistical clustering algorithm

Initial: Load the UBM and the chose number of clusters L

Step 1: Use the Gaussian mean vectors of the UBM as feature
vectors, Y = {µ1, µ2, . . . µc}
Step 2: Train a L components Gaussian Mixture Model
(GMM) ∼ N (ω̃i, µ̃i, Σ̃i), i = 1 . . . L, using the feature
vectors Y with EM algorithm after a random partition ini-
tialization

Step 3: Iterate EM algorithm in Step 2 several times

2
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Step 4: Separate each Gaussian component of the GMM ob-
tained in Step 2 as a single Gaussian model and discard the
weights ω̃i in order to give equal importance to all the mod-
els:

λi ∼ N (µ̃i, Σ̃i) (6)

Step 5: Assign the cth Gaussian mean vector of the UBM,
i.e. µc to cluster k in ML sense as,

k = arg max
1≤j≤L

p(µc|λj) (7)

In our experiment, we use 1000 iterations in Step 3 of Algorithm
1 (with constraints on initial and final variance ceiling, flooring of
global data). Though the parameters of the models λ1, . . . λL are
slightly different each run of the algorithm for a particular number of
clusters, however it yields the same final clustering output, showing
that this clustering algorithm is not affected by the random initial-
ization.

Then, a MLLR transformation is estimated for a given speech
data with respect to each cluster using the sufficient statistics accu-
mulated from the Gaussian components assigned to that particular
cluster. Algorithm 2 describes in detail multi-class wise MLLR
transformations for given rth target speaker data X = {x1, . . . xT }
with respect to UBM.

Algorithm 2: Estimation of cluster-wise MLLR transformation

Step 1: Estimate γj (t) for the feature vector X with respect
to the UBM as in Eqn.(2)
Step 2: For the Lth class, compute the sufficient statistics
using Gaussian components ε L as in Eqn.(3-4),

K
(i)
L =

∑
jεL

T∑
t=1

γj(t)
1

σ2
ji

xi(t) µ
′
j (8)

G
(i)
L =

∑
jεL

1

σ2
ji

µjµ
′
j

T∑
t=1

γj (t) (9)

Step 3: ith row of the MLLR transformation for Lth class is
obtained,

WL
i = K

(i)
L G(i)−1

L (10)

Step 4: Repeat Step 2 to 3 upto the number of classes

Fig. 3 graphically illustrates the UBM based multi-class MLLR
transformations. The number of MLLR transformations and MLLR
super-vectors per speaker depends on the number of classes chosen
for the clustering. Finally, target speakers are represented by their
m-vectors extracted from their MLLR super-vectors as described in
Sec. 3. It is to be noted that alignment of data i.e. Step 1 in Algo-
rithm 2 is required only once irrespective estimation of number of
class wise MLLR transformations with respect to UBM.

4.2. K-means based multi-class MLLR m-vector system

The K-means based system is similar to statistical clustering based
multi-class MLLR m-vector system. The only difference is that the
conventional K-means algorithm with random initialization is used
for clustering, associated with the euclidean distance measure. Clus-
tering is stopped (i.e. converge) when cluster associated elements
are not altered. We use the terms “conventional K-means” and “K-
means” interchangeably throughout the paper.

UBM

Class 1 Class 2 Class L

{Gaussian components index}
{2, 8, 15, . . .} {1, 7, 3, . . .}

MLLR tran. 1 MLLR tran. L

{6, 10, . . .}

Fig. 3. Clustering of UBM Gaussian components and estimation of
an MLLR transformation with respect to each cluster.

5. SESSION VARIABILITY COMPENSATION AND
SCORING

Linear Discriminant Analysis (LDA) is applied on the m-vectors in
order to reduce the dimensions of the vectors and increase the dis-
crimination between speakers. LDA projected m-vectors are then
post-processed for speaker session variability compensation. Sev-
eral post-processing techniques are available in literature, namely
LDA followed by Within-Class Covariance Normalization (WCCN),
Eigen Factor Radial (EFR) [9] and Probabilistic (P)-LDA [10] etc.
We chose the EFR recently introduced for i-vector based speaker
verification systems [9]. In our case, iterative normalization of the
length of the m-vectors is performed as,

m̂← V −
1
2 (m−m)√

(m−m)′V −1(m−m)
(11)

where V and m are the covariance matrix and mean vector of the
training m-vectors respectively for successive iterations. V and m
are calculated from development data set collected over many non-
target speakers.

During the test, a Mahalanobis-based scoring function de-
scribed in Eqn.(12) is used for scoring between two m-vectors (i.e.
m̂1, m̂2):

score(m̂1, m̂2) = (m̂1 − m̂2)
′
Ω−1(m̂1 − m̂2) (12)

where Ω is the within-class covariance matrix computed using devel-
opment data with non-target speakers. It is to be noted that LDA and
EFR are implemented separately for each sub-system (as in Fig.2)
i.e. each sub-system has its own LDA transformation, Ω and V etc.
Two iterations of EFR are used during post-processing for all sys-
tems presented in the paper. Finally, scores of the m-vectors i.e.
sub-systems are fused together for a particular LDA dimension. For
fusion, equal weights are given to all sub-systems,

fused score =
1

Nsub

Nsub∑
i=1

score(m̂test
i , m̂r

i ) (13)

where m̂test
i and m̂r

i denote respectively, the LDA-EFR processed
m-vectors of test utterance and claimant, r for ith subsystem.

6. EXPERIMENTAL SETUP

The baseline system in our experiment is similar to [6], where global
MLLR transformations (i.e. super-vectors) are estimated for each
speaker and are processed through the m-vector technique. The
global MLLR transformation is estimated with respect to a UBM
for a given speech segment without any speech transcriptions.

3
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Experiments are performed on NIST 2008 SRE core condition
for all male speakers following the evaluation plan [11]. There are
1270 speech utterances for training 1270 male target models. Each
utterance is around 5 minutes long and contains in average 2.5 min-
utes of speech.

For signal processing, 47 dimensional Perceptual Linear Pre-
dictive (PLP) feature vectors (15 static with their ∆, ∆∆, ∆E and
∆∆E) are extracted from the speech signal at 10 ms rate over the 0-
3800 Hz bandwidth. Voice activity detection is then applied on the
feature vectors to discard the silent or of low energy frames. Finally,
selected frames are normalized to zero mean and unity variance at
utterance level.

A UBM of 512 Gaussian components with diagonal covariance
matrices is trained using male data from NIST 2004 SRE. LDA and
EFR are implemented with 12399 utterances which are collected
over 890 non-target speakers (NIST 2004-05, Switchboard II part
1, 2 & 3; Switchboard cellular part 1 & 2, about 15 sessions per
speaker).

MLLR transformations are estimated with a single iteration in
all systems. We impose a constraint that if estimation of the MLLR
transformation is not possible for a class due to singularity problem
during inverse of G(i) matrix for lack of sufficient frames, we con-
sider the global MLLR transformation as a substitute transformation
for that particular class. Equal Error Rate (EER) and Minimum De-
tection Cost Function (MinDCF) are used for system performance
measurement as per NIST 2008 SRE plan [11].

7. RESULTS AND DISCUSSION

7.1. Comparison of performance of m-vector system with con-
ventional approach of speaker characterization

In this section, we compare the performance of m-vector tech-
nique (using the overlapped window method) with the system where
speakers are characterized by their full MLLR super-vectors (called
full system). Table 1 presents the system performance on NIST
2008 SRE core condition det 7 task. In the case of m-vector, system
performance is shown for m-vector dimension of 500 elements (i.e.
overlap window size 500).

Table 1. Comparison of performance of the m-vector technique with
the system of speakers characterization by their full MLLR super-
vector on NIST 2008 SRE core condition (det 7 task).

System m-vector LDA Opt. EER(%)/(MinDCF)
dim. dim.

(A) Full 2209 200 4.37 /(0.0272)
(B) m-vector 500 400 3.46 /(0.0237)

(overlapped)
(A+B)‡ - - 3.45 /(0.0193)
‡ linear fusion. (A+B) refers as (full+overlapped)

From Table 1, similarly to [6], it can be observed that m-vector
system shows significantly better performance than the full system.
It reflects the fact that m-vectors extract more speaker relevant infor-
mation from the MLLR super-vector than the full approach. Further,
fusion of system A with B reduce speaker verification error rate, es-
pecially the MinDCF. This shows that the full system also contains
some speaker related information complementary to the m-vector
system, which is not covered by the overlapped window method.
In rest of the paper, other all system performances are compared in
the fused (across a particular LDA dimension) full+overlapped (m-
vector dimension of 500) framework.

7.2. Analysis performance of the proposed multi-class MLLR
m-vector system with proposed statistical and conventional K-
means algorithms

In this section, we first show the effect of the number of class-wise
MLLR transformations on the proposed UBM based multi-class
MLLR m-vector system for speaker verification. Table 2 presents
the system performance for the respective clustering algorithms on
NIST 2008 SRE core condition det 7 task in terms of EER. For
simplicity, optimal LDA projected dimension is not shown in the
table. In case of K-means, we perform 10 pass of experiments with
random initialization of clustering for a particular number of clusters
and provide the system performance of a run which yields the best
result.

Table 2. Effect of number of class-wise MLLR transformations in
proposed UBM based multi-class MLLR m-vector system for speaker
verification on NIST 2008 SRE core condition (det 7 task).

m-vector Clustering # of class-wise EER
system Algorithm MLLR trans. (%)

Baseline - 1 (global) 3.45
Proposed Proposed 2; (358,154) 3.21

Multi-class Statistical 3; (100,100,312) 3.44
MLLR 2; (252,260) 3.22

K-means 3; (170,180,162) 3.08
(,) shows # of Gaussians of respective classes

From Table 2, we can observe that:
• The proposed multi-class MLLR m-vector system shows

lower speaker verification error rate than the baseline system.
• Both algorithms show similar system performance for 2 clus-

ters. For 3 clusters, K-means may perform better than the
proposed clustering in the best cases, but it can be observed
from Table 3, that most experiments results obtained with K-
means for 3 classes are similar to those of the proposed clus-
tering. The K-means system performance with 2 or 3 clusters
are very close and both can be optimal depending on the case.
Therefore, we do not proceed our experiments beyond 3 clus-
ters.

• Proposed Statistical clustering algorithm shows equal or
comparable performance to the conventional K-means.

In order to show the effect of clustering with random initial-
ization in conventional K-means algorithm, we compare the perfor-
mance (in terms of EER) of the multi-class MLLR m-vector speaker
verification system based on K-means and the proposed method in
Table 3 on NIST 2008 SRE core condition det 7 task for various
number of class wise MLLR transformations.

From Table 3, we can make the following observations:
• Speaker Verification (SV) performance of the multi-class

MLLR m-vector system with K-means varies across the runs,
in contrast to the proposed statistical clustering algorithm.
This shows that K-means clustering algorithm is affected by
the random initialization and gives different clustering out-
put for different runs in contrast to the proposed statistical
algorithm.

• The proposed algorithm also yields equal or comparable per-
formance to the best result obtained with K-means. This indi-
cates that the proposed method always provides optimal clus-
tering. Moreover, it does not need to run many times experi-
ments unlike K-means for system judgment.
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Table 3. Effect of clustering with random initialization in proposed
statistical algorithm and conventional K-means based multi-class
MLLR m-vector system for speaker verification on NIST 2008 SRE
core condition (det 7 task)

Exp. # of class-wise MLLR trans. [% EER]
No. 2 3

Statistical K-means Statistical K-means
1 3.21 3.25 3.44 3.57
2 nc 3.37 nc 3.83
3 nc 3.52 nc 3.30
4 nc 3.45 nc 3.08
5 nc 3.52 nc 3.35
6 nc 3.48 nc 3.79
7 nc 3.22 nc 3.83
8 nc 3.44 nc 3.32
9 nc 3.47 nc 3.31

10 nc 3.63 nc 3.62
nc=no change

7.3. Comparison of performance of baseline system with the
proposed multi-class MLLR m-vector system

In this section, we compare the performance of the baseline sys-
tem with the proposed multi-class MLLR m-vector system using
statistical clustering on various det tasks (e.g. det 5: telephone-
microphone, det 7: telephone-telephone) in NIST 2008 SRE core
condition for 2 and 3 class wise MLLR transforms, respectively for
the proposed and K-means clustering, which showed best system
performance in previous section.

Table 4. Comparison of performance between the baseline system
and the proposed multi-class MLLR m-vector system for statistical
clustering (in case of 2 classes) and K-means (in case of 3 classes)
algorithm on NIST 2008 SRE core condition over various tasks.

m-vector %EER/(MinDCF)
system det 5 det 6 det 7 det 8

Baseline 7.11 6.46 3.45 2.92
(0.0351) (0.0392) 0.0193 (0.0155)

Multi-class
Stat. clus. (2 class) 5.51 6.62 3.21 2.20

(0.0298) (0.0382) (0.0191) (0.0121)
K-means (3 class) 5.55 6.50 3.08 2.16

(0.0300) (0.0380) (0.0181) (0.0101)

From Table 4, it is observed that multi-class MLLR m-vector
shows lower error rate in most of the det tasks in terms of EER
and MinDCF. Multi-class m-vector with proposed algorithm hav-
ing 2 classes also shows very comparable performance to the system
which is even obtained with 3 classes in K-means. This further also
reveals the optimality of the proposed clustering technique. More-
over, the proposed system does not require an additional alignment
of data with respect to UBM for estimation of multiple MLLR trans-
formations (see Algorithm 2) compared to the baseline system.

8. CONCLUSION

In this paper, we extended the recently introduced global MLLR
super-vector based m-vector concept in a UBM framework for

speaker verification into a multi-class MLLR m-vector. We ad-
dressed two clustering algorithms for multi-class wise MLLR
transformations for m-vector system by partitioning the Gaussian
components of the UBM into different classes. One is based on
conventional K-means and the other proposed statistical algorithm
is based on Expectation Maximization (EM) and Maximum Likeli-
hood (ML). We showed that the proposed multi-class MLLR based
m-vector system performs better than the conventional m-vector
system. Furthermore, it does not require an additional temporal
alignment of data with respect to UBM for estimation of multiple
MLLR transformations. The system performances are compared
on NIST 2008 SRE core condition over various det tasks. Second,
we showed that the proposed clustering algorithm is not affected
by the random initialization unlike conventional K-means algorithm
and hence provides stable clustering output compared to K-means.
Furthermore, it also gives speaker verification performance equal
or comparable to the best one obtained with the K-means algorithm
(over various pass run of experiments).
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