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ABSTRACT

Various iterative unbiased finite impulse response (UFIR) al-
gorithms are proposed for filtering, smoothing, and predic-
tion of discrete-time state-space models in white Gaussian
noise. The distinctive property of UFIR algorithms is that
noise statistics are completely ignored. Instead, an opti-
mal window size is required for optimal performance. Un-
der real-world operating conditions with uncertainties, non-
Gaussian noise, and unknown noise statistics, the UFIR es-
timator generally demonstrates better robustness than the
Kalman filter, even with suboptimal window size.

1. INTRODUCTION

It is well known from practical experience [1] that implemen-
tation of the Kalman filter is often difficult due to the inabil-
ity in getting a good estimate of the noise covariance matri-
ces. Optimal estimators [2] may thus be less accurate than
unbiased ones that are derived under the unbiasedness con-
dition E{x̂n} = E{xn}, where xn indicates a state variable
at discrete time n, x̂n its estimate, and E{x} is the expected
value of x. That means that unbiased finite impulse response
(UFIR) structures that ignore noise statistics and initial errors
are able to produce acceptable suboptimal estimates.

The basic operating principles of the optimal Kalman fil-
ter [3] and UFIR filter [4] are summarized in Fig. 1. At
time n, the Kalman filter requires the noise statistics at time
n−1, such as the process and measurement noise covariance
matrices Qn−1 and Rn−1 respectively, as well as the estima-
tion error covariance Pn−1. The optimal UFIR filter ignores
these statistics. Instead, it requires the optimal averaging in-
terval of Nopt points that can easily be found via measure-
ment [5]. Applications of UFIR filters can be found in many
papers [6–11]. Even so, UFIR estimators still remain some-
what beyond the typical range of traditional signal processing
techniques.

Below, we discuss a family of iterative UFIR algorithms
for filtering, smoothing, and prediction of discrete state-
space models in white Gaussian noise. The following defini-
tions will be used: UFIR estimator satisfies the unbiasedness
condition, optimal FIR (OFIR) minimizes the mean square
error (MSE), and optimal UFIR (OUFIR) estimator mini-
mizes the MSE in the UFIR estimator by Nopt.

Figure 1: Operating diagrams of the optimal Kalman and OUFIR
filters.

2. LINEAR MODEL AND UFIR ESTIMATOR

Consider a class of discrete TV linear models represented in
state space with the state and observation equations

xn = Fnxn−1 +Bnwn , (1)
zn = Hnxn +vn , (2)

where xn ∈ ℜK and zn ∈ ℜM are the state and observation
vectors, respectively. Here, Fn ∈ ℜK×K , Bn ∈ ℜK×P, and
Hn ∈ ℜM×K . The noise vectors, wn ∈ ℜP and vn ∈ ℜM ,
have zero mean white Gaussian components, E{wn}= 0 and
E{vn}= 0, are mutually uncorrelated, E{wiv

T
j }= 0, for all

i and j, and have covariances Qn = E{wnw
T
n } and Rn =

E{vnv
T
n } which may be unknown to the engineer.

The p-shift estimate x̂n+p|n of xn can be provided at time
n+ p with the UFIR estimator proposed in [12, 13]. We sup-
pose that x̂n+p|n is the estimate at n+ p via zn from the past to
n; p = 0 corresponds to filtering, p > 0 to p-step prediction,
and p < 0 to q-lag smoothing, where q =−p. Sometimes we
simplify notation by using x̂n+p , x̂n+p|n.

Let us first write the iterative filtering estimate at n, by
p = 0, as

x̂l = Flx̂l−1 +Kl(zl−HlFlx̂l−1) , (3)

Kl = GlH
T
l , (4)

Gl = [HT
l Hl +(FlGl−1F

T
l )
−1]−1 . (5)

The initial values are given by

x̂s = F m+1
s,0 H −1

s,m Zs,m , (6)

Gs = F m+1
s,0 (HT

s,mHs,m)
−1F m+1

s,0
T
, (7)
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where H −1
n,m = (HT

n,mHn,m)
−1HT

n,m and

Hn,m = H̄n,mFn,m , (8)

Zn,m =
[
zT

n zT
n−1 . . . zT

m
]T

, (9)

Fn,m =
[
F m+1T

n,0 F m+1T

n,1 . . . FT
m+1 I︸ ︷︷ ︸

n−m+1

]T
, (10)

H̄n,m = diag
(
Hn Hn−1 . . .Hm︸ ︷︷ ︸

n−m+1

)
, (11)

F r−g
r,h =

g

∏
i=h

Fr−i = Fr−hFr−h−1 . . .Fr−g . (12)

Here, s = m+K−1 and l ranges from m+K to n. The filter
output is taken when l = n.

Given x̂n from (3) with l = n, the p-shift estimate can
then be computed as

x̂n+p = Bn,m(p)(F m+1
n,0 )−1x̂n , (13)

where

Bn,m(p) =


F m+1

n+p,0 , p >−N +1 ,
I , p =−N +1 ,(
F n+p+1

m,0

)−1
, p <−N +1 ,

(14)

As can be seen, the noise statistics are not required by this
procedure.

For TI models, the filtering algorithm simplifies to

x̂l = Fx̂l−1 +Kl(zl−HFx̂l−1) (15)

Kl = GlH
T , (16)

Gl = [HTH+(FGl−1F
T )−1]−1 , (17)

with the initial conditions computed by

x̂s = Fs−mH −1
s,m Zs,m , (18)

Gs = Fs−m(HT
s,mHs,m)

−1Fs−mT
. (19)

Accordingly, the p-shift estimate can be computed as

x̂n+p = Fpx̂n . (20)

One may conclude that the algorithm of (15)–(20) is sim-
ple from a programming perspective. As has been shown
[12–14], it is also a strong rival to the Kalman filter if the
noise covariances are not known exactly.

2.1 Estimation Errors
For the estimation error εn+p = xn+p− x̂n+p, the MSE Pn+p
at time n+ p can be defined as

Pn+p = E{εn+pε
T
n+p} (21)

and the error lower bound (LB) can be shown to be [14]

PLB
l = (I−KlHl)FlP

LB
l−1F

T
l (. . .)

T +KlRlK
T
l . (22)

Then the p-shift LB can be computed for TV and TI models
as, respectively,

PLB
n+p = Bn,m(p)F m+1

n,0
−1
PLB

n F m+1
n,0

−T
BT

n,m(p) ,(23)

PLB
n+p = FpPLB

n FpT , (24)

where PLB
n is provided from (22) with l = n. The LB can

also be computed in the three-sigma sense as shown in [4].

Table 1: Fixed-Horizon TV UFIR Filtering Algorithm

Stage

Given: K, N, m = n−N +1 > 0,
s = m+K−1, m+K 6 l 6 n .

Set: x̂s by (6) and Gs by (7) .

Update: Gl = [HT
l Hl +(FlGl−1F

T
l )
−1]−1 ,

x̂l = Flx̂l−1 +GlH
T
l (zl−HlFlx̂l−1) .

Instruction: Use the estimate when l = n.

Table 2: Full-Horizon TV UFIR Filtering Algorithm

Stage

Given: K, n > K.
Set: x̂K−1 by (6) and GK−1 by (7) for m = 0.

Update: Gn = [HT
n Hn +(FnGn−1F

T
n )
−1]−1 ,

x̂n = Fnx̂n−1 +GnH
T
n (zn−HnFnx̂n−1) .

3. UFIR ALGORITHMS

For filtering, smoothing, and prediction, the UFIR algorithms
can be represented as in the following.

3.1 Filtering
The filtering UFIR estimate is obtained by (3) or (15) with
the estimation error LBs given by (22). There can be recog-
nized several particular solutions.

Fixed-Horizon Filtering: The fixed-horizon (fixed mem-
ory size N) iterative UFIR filtering algorithm is summarized
for TV models in Table 1. It implies that N = const. Note
that the estimation error is minimal if one sets N = Nopt [5].
A simplification for the TI model is straightforward. One
must just let all of the matrices be TI in Table 1.

Full-Horizon Filtering: This algorithm given in Table 2
is most simple. It utilizes all the data with N = n+ 1 and
requires only the number of the states K. A natural extension
to the TI case is provided by removing the time dependencies
from the matrices. The error LB can be computed by (22)–
(24) if one substitutes l with n. Note that the full-horizon
UFIR filter may demonstrate substantial decrease in the out-
put noise as n becomes large.

Tricky-Horizon Filtering: The tricky-horizon (variable
memory size N) algorithm implies an individual Nopt at each
n. Such flexibility allows for better system tracking with
minimum residuals [12] in adaptive systems [15]. To im-
plement tricky-horizon filtering, the algorithm (Table 1) can
be used if to let N = var.

3.2 Smoothing
Provided the filtering estimate (3), the TV and TI UFIR
smoothers become by (13) and (20) respectively [14]

x̂n−q = B̄n,m(q)(F m+1
n,0 )−1x̂n , (25)

x̂n−q = F−qx̂n , (26)
2
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Table 3: Fixed-Interval TV OUFIR Smoothing Algorithm

Stage

Given: K, N = Nopt, q, m = n−N +1 > 0,
s = m+K−1, m+K 6 l 6 n .

Set: x̂s by (6) and Gs by (7) .

Update: Gl = [HT
l Hl +(FlGl−1F

T
l )
−1]−1 ,

x̂l = Flx̂l−1 +GlH
T
l (zl−HlFlx̂l−1) .

Use x̂n when l = n and compute

x̂n−q = B̄n,m(q)(F m+1
n,0 )−1x̂n .

Instruction: Valid for any n > N−1. The fixed
interval of M = Nopt points is from time
index m to n.

where

B̄n,m(q) =


N−2−q

∏
i=0

Fn−q−i , q < N−1 ,

I , q = N−1 ,(
q−N
∏
i=1

Fm−i

)−1

, q > N−1 .

(27)

The error LBs become, respectively,

PLB
n−q = B̄n,m(q)F m+1

n,0
−1
PLB

n F m+1
n,0

−T
B̄T

n,m(q) ,(28)

PLB
n−q = F−qPLB

n F−qT
, (29)

where PLB
n is provided by (22) at l = n. As in filtering, here

the LB can serve well in the three-sigma sense [4].
Fixed-Interval Smoothing: This algorithm is intended to

estimate x̂n−q|n with any lag 0 < q < M utilizing measure-
ment from n−M + 1 to n. It is most efficient if M = Nopt
as implemented in Table 3. To apply this algorithm to TI
models, one must compute x̂n−q = F−qx̂n.

Fixed-Lag Smoothing: Two basic fixed-lag smoothing al-
gorithms can be recognized. Provided Nopt, the fixed lag q
OUFIR smoothing algorithm is listed in Table 3 if one sets
N = Nopt and q = const. Its extension to the TI case can be
provided by replacing the x̂n−q equation with x̂n−q =F−qx̂n.
Fixed-lag full-horizon UFIR smoothing implies that the fil-
ter window includes all the available data, but the lag is fixed.
The relevant algorithm is listed in Table 4. Its extension to
the TI case can be obtained by replacing the x̂n−q equation
with x̂n−q as x̂n−q = F−qx̂n.

Fixed-Point Smoothing: This algorithm implies that mea-
surements are available from 0 up to n, but the estimate is
required at some fixed past point 0 6 v < n, where v is a con-
stant [16]. The time-varying lag is q = n− v and the UFIR
smoother is thus always full-horizon (Table 5). By replacing
the x̂n−q equation with x̂n−q =F−qx̂n, it becomes applicable
for TI models.

3.3 Prediction
State prediction plays a key role in many applications. Two
basic UFIR prediction algorithms can be found in [4].

Table 4: Fixed-Lag Full-Horizon TV UFIR Smoothing Algorithm

Stage

Given: K, q = constant, n > K.
Set: x̂K−1 by (6) and GK−1 by (7) for m = 0.

Update: Gn = [HT
n Hn +(FnGn−1F

T
n )
−1]−1 ,

x̂n = Fnx̂n−1 +GnH
T
n (zn−HnFnx̂n−1) .

Compute x̂n−q for n > q as

x̂n−q = B̄n,m(q)(F m+1
n,0 )−1x̂n .

Table 5: Fixed-Point TV UFIR Smoothing Algorithm

Stage

Given: K, v = constant > 0, q = n− v, n > K.
Set: x̂K−1 by (6) and GK−1 by (7) for m = 0.

Update: Gn = [HT
n Hn +(FnGn−1F

T
n )
−1]−1 ,

x̂n = Fnx̂n−1 +GnH
T
n (zn−HnFnx̂n−1) .

Compute x̂n−q for n > v as follows:

x̂n−q = B̄n,m(q)(F m+1
n,0 )−1x̂n .

4. SOME GENERALIZATIONS AND
CONCLUSIONS

Based on extensive investigations provided by many authors,
now we provide some generalizations, compare the trade-off
between the OUFIR, OFIR and Kalman filters, and summa-
rize the results in Table 6.

4.1 OUFIR vs. OFIR
Beginning with the early limited memory filter of Jazwin-
ski [2], OFIR filtering has been under development for sev-
eral decades. In control theory, fundamental progress was
achieved by Kwon et al. and his followers [18, 20, 25–28].
In signal processing, solutions were found by Shmaliy et
al. [4, 13, 19]. It was shown in [28] that different kinds of
limited memory filters [2,17] are equivalent to the OFIR one.
The most serious flaws of this technique are high compu-
tational complexity and high memory consumption. With
such poor engineering features, OFIR estimators still have
not gained currency and their development remains mostly
at a theoretical level.

On the other hand, OFIR estimators do not result in esti-
mation errors that are substantially smaller than OUFIR ones,
especially when N� 1. The rule of thumb here is as shown
in Fig. 2: The error difference between the OFIR and OUFIR
estimates diminishes as N increases. Note that the boundary
value 10 . . .30 in Fig. 2 is flexible and depends on the model.
However, recalling that FIR filters require a large order (win-
dow size N� 1) to guarantee good performance, we obtain
the following conclusion:

Fast and low-complexity iterative OUFIR algorithms
that ignore noise statistics and initial error statistics are
practically superior to the best known OFIR ones.

Note that this deduction often holds even if N is small.
3
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Table 6: Critical Evaluation of the Kalman, OFIR, and OUFIR Filters

Kalman Batch OFIR Iterative OFIR Batch OUFIR Iterative OUFIR
[23] [13, 18, 19] [18, 20] [21, 22] [12, 13]

Optimality: Optimal Optimal Optimal Unbiased Unbiased
Initial conditions: A priori A posteriori A posteriori Ignored A posteriori
Noise statistics: Required Required Required Ignored Ignored
Noise: White Arbitrary White Arbitrary Arbitrary
System model: Stochastic Arbitrary Arbitrary Arbitrary Arbitrary
Memory (points): 2 Nopt Nopt Nopt Nopt

Stability: May diverge BIBO BIBO BIBO BIBO
Operation: Fast Slow Medium Medium ∼ Nopt times slower than Kalman;

Fast in parallel comp.
Total memory: Small Large Medium Large ∼ Nopt times more than Kalman
Complexity: Low High Medium Medium Low

Figure 2: Effect of the estimator window size N on the error dif-
ference between the OUFIR and OFIR estimators. Threshold A in-
dicates where the difference becomes visually indistinguishable.

But in some applications, OFIR filters can be more appropri-
ate because of their better accuracy.

4.2 OUFIR vs. Kalman Filter
The well-known features of the Kalman filter are optimal-
ity, fast computation, and low memory consumption. How-
ever, the Kalman filter requires a priori initial condition and
noise statistics, and this is recognized as the most annoying
flaw of the Kalman filter. Because of this requirement, the
Kalman filter is suboptimal for all practical purposes. More-
over, its optimality is guaranteed only if the noise sources are
white, which is not the case for many applications. Finally,
the Kalman filter applies only to stochastic models.

In turn, the iterative OUFIR filter ignores noise statis-
tics, allows the noise to have any distribution and covariance,
exhibits BIBO stability, and serves for both stochastic and
deterministic models. However, it does not guarantee opti-
mality, especially when Nopt is small. It requires (Nopt− 1)-
times more computational time and needs about Nopt times
more memory than the Kalman filter.

Figure 3: Effect of errors in the noise covariances of the Kalman
and OUFIR estimates. The value ∆ depends on N and becomes
insignificant when Nopt� 1.

The Kalman filter is thus best when the noise is white and
its statistics are exactly known. Otherwise, one may follow
the rule of thumb sketched in Fig. 3. As can be seen, it is
only within a narrow range around the actual noise covari-
ances that the OUFIR filter falls a bit short of the Kalman
filter. Otherwise, the OUFIR filter demonstrates smaller er-
rors. The Kalman filter is also the best filter under the ideal
conditions. Otherwise, its error grows more rapidly than the
OUFIR, meaning that the latter is more robust in real-world
applications (Fig. 4). Note that the error difference ∆ be-
tween the two filters decreases with increasing Nopt. These
observations by diverse authors who have investigated uncer-
tainties, different kinds of noise sources, and other irregular
perturbations, result in the following important inference:

Under the real world operating conditions, and when
noise statistics and initial error statistics are not known
exactly, the OUFIR estimator is able to outperform the
Kalman filter even if Nopt is not large.

4
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Figure 4: Effect of operating conditions on the Kalman and OUFIR
estimates. The value ∆ depends on N and becomes insignificant
when Nopt� 1.

Simulation results confirming these observations can be
found in [12, 14, 24]. More details about the iterative UFIR
estimation algorithms can be found in [29].
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