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ABSTRACT

This paper proposes a new algorithm for the restoration of the
clipped signal based on the structured matrix rank minimiza-
tion. We assume that the signal is modeled by deterministic
autoregressive model with unknown model order and propose
the matrix rank minimization approach to recover the clipped
signal. The main result of this paper is to formulate the sig-
nal declipping problem as the Hankel structured matrix rank
minimization problem with inequality constraint and to pro-
vide an algorithm to solve this problem by modifying the null
space based alternating optimization (NSAQO) algorithm. Nu-
merical examples show that the proposed algorithm recovers
the clipping signal efficiently.

Index Terms— signal restoration, signal declipping, ma-
trix rank minimization, compressed sensing

1. INTRODUCTION

This paper proposes a signal declipping algorithm based on
the matrix rank minimization approach. Signal clipping is a
signal distortion process as illustrated in Fig. 1 and is oc-
curred when the signal goes beyond the dynamic range of the
system (also known as the clipping level). Several algorithms
have been proposed for the signal declipping [1, 2, 3, 4]. In
[1] the double sides period substitution method is proposed
for packet voice communications. In [2] the signal declipping
algorithm is proposed based on the assumption that the signal
is modeled by the autoregressive (AR) model (and more stat-
ical models). In [3, 4] the sparse representation based signal
declipping algorithm is proposed using the orthogonal match-
ing pursuit (OMP). The performance of the algorithm [3] has
better than that of other conventional algorithms such as [2]
when a desirable overcomplete dictionary is given. However,
we focus on the AR model based signal declipping and pro-
posed the matrix rank minimization approach because the per-
formance of the OMP based algorithm highly depends on the
given dictionaries.

Similarly to [2], this paper assumes that the signal is mod-
eled by a numerical model and takes a rank minimization ap-
proach proposed in [5], where the signal is modeled by the
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autoregressive-moving average with exogenous terms (AR-
MAX) model and is recovered by estimating the model order
to achieve the video inpainting. In this approach, the signal
recovery problem is formulated as the Hankel structured ma-
trix rank minimization problem, and the signal is recovered by
minimizing the matrix rank. The advantage of the rank min-
imization approach is that the signal is restored even if both
the coefficients and the model order are unknown. Therefore
this paper proposes the matrix rank minimization approach to
signal declipping problems.

Although the rank minimization problem is NP hard in
general, several useful and practical algorithms are proposed
to obtain its approximate solution [6, 7, 8, 9, 10]. This pa-
per utilizes and modifies the null space based alternating op-
timization (NSAO) algorithm proposed in [7], where a low-
rank solution is provided by optimizing the null space matrix.
The advantage of the NSAO algorithm is suitable for parallel
computing. In [7], this algorithm is implemented on parallel
GPGPU, and numerical experiments indicates its high com-
puting efficiency.

The contribution of this paper is to modify the NSAO al-
gorithm to guarantee that the solution matrix has the Hankel
structure and satisfies the inequality constraints, and to pro-
vide a matrix rank minimization based signal declipping al-
gorithm.

2. MAIN RESULTS

2.1. Problem formulation

We define the undistorted signal s = [s; s5...57]7 € R
and the observed signal with clipping y = [y; y2...yz]" €
RY, where y; is described by the distortion function g as

S; if —C<s;<C
yi=gc(si)=q C ifC<s; , (N
—C ifs; < —C

where C' is a constant corresponding to the clipping level. Let
us assume that the signal is modeled by the following model,

Si = Z%‘Si—y 2
=1
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Fig. 1. An example of the original speech signal and the
clipped signal. Clipping level is 0.3.

where r denotes the model order. In order to simplify the
discussion, we consider here a noiseless case. In [2] the AR
model is utilized for the signal declipping and dequantization,
and this paper proposes a declipping algorithm based on the
model similarly. As in [5], we take an approach to recover the
signal by estimating the model order instead of estimating a;,
that is, we recover the unclipped samples by estimating the
signal such that has a proper model order.
Let us define the Hankel matrix S by

S1 S92 e SN
S9 S3 SN+1

S=1. . . ) e RVN. (3)
SN  SN+1 S2N -1

Since it holds that rankS = n if and only if the model order
equals n, this paper proposes the following matrix rank min-
imization problem to estimate the model order and to recover
the declipped samples for given y;, i = 1,...,2N — 1,

Minimize rankS
subjectto S € H,
C<8;; fori+j—1ellt,
Si;<—C fori+j—1ell,
Si;=wyi fori+j—1¢IITUI},
4)

where H denotes the set of matrices with the Hankel struc-
ture defined in (3), S’Z ; denotes the (i,j)-element of matrix S,
and IIT and II~ denote the index sets of positive and neg-
ative clipped samples in y;. This problem is difficult to ob-
tain the exact solution because the matrix rank minimization
problem is NP hard. In order to solve (4) approximately, this
paper proposes a Hankel structured matrix rank minimization
algorithm using the null space based alternating optimization
algorithm.

2.2. The Null Space Based Alternating Optimization Al-
gorithm

This subsection presents the null space based alternating opti-
mization (NSAO) algorithm proposed in [7]. Let us consider
the following matrix rank minimization problem,

Minimize rankZ subjectto Z € Q C R™ ", (5)

where Z is an optimization matrix, m, < n,, and ) is a given
convex set. Because the problem of minimizing the matrix
rank is equal to the problem of maximizing its nullity, (5) is

equal to the following matrix rank maximization problem,

Maximize rankW subjectto ZW = 0y, ., Z € §2, (6)

where W € R"=*"* and Z are variable matrices, and 0,y,_ .
denotes the m, X n, zero matrix. Based on the fact that we
can maximize the rank of W by minimizing |W||% under
only the constraints W; ; = 1 for all 4, where || - || p denotes
the Frobenius-norm. In [7] proposes the following problem
to obtain an approximate solution of (5),

Minimize ||W|% 7
subjectto  ZW =0y, n,, Wy =1Vi, Z € Q.

and provides NSAO-GPM (Algorithm 2 of [7]).

2.3. Signal Declipping Algorithm
Let us define Z and W by

I ={Se RN
C<8;;forit+j—1ellT,

S <—Cflori+j—-1ell,

S;; =yifori+j—1¢ MU}, (8)
and

W={WeR"N W, =1}. ©)

The set Z corresponds to the inequality constraints in (4). Let-
ting Z = S and Q = H N Z in the NSAO algorithm, the
re;axed problem of (4) is obtained as follows,

Minimize ||[W|%

subjectto  SW = O, n., WeEW, SeInH. (10

If the sequence s; is completely modeled by the AR model,
(10) has a solution such that SW = 0. However, s; usually
contains a model error, and therefore there seldom exists W
such that SW = 0. Hence we deal with the following relaxed
problem instead of (4),

Minimize ~||W|% + ||5'WH2F
subjectto W e W, : (1
SeInNH



In the NSAO-GPM of [7], it is hard to compute the projec-
tion Py exactly, and therefore this paper proposes the modi-
fied NSAO-GPM algorithm as shown in Algorithm 1. In this
algorithm, S is projected on Z after its update on A and is
always included in H N Z.

Although this algorithm is not the GPM exactly, it guar-
antees that S remains in Z N in each iteration, and it tales a
low computational cost.

Next we focus on the computations of projected gradient
matrices Fig and projection Pz. Since the initial value of S
is a Hankel matrix and P is the projection on H, S and Fg
remain to have the Hankel structure. Therefore F's can be
described as

i fo .. fn
fo f3 INy1

Fg=1". : ) (12)
f;v Iyt fan—1

Because Fj is obtained as the least squares solution of the
simultaneous equation Fy = — Dy, f; is the least squares so-
Iution of the following equation,

filt1...1)" = —d,. (13)

where d; € R! is the vector defined by
dy=[dydas 1d3y 2 ... di;)7,

and d; ; denotes the (¢, j)-element of the gradient matrix Dy,
Dg in this subsection is equal to Dy in [7]. Then we can
obtain f; simply as f; = —1 Ditjo1=1 dij-

Next we move onto the calculation of Pz(.S). Since it is
difficult to compute Pr(S) exactly, this paper proposes a sim-

ple approximation of the projection S = Pz(S) as follows,

C ifgelltand S;; <C
—C ifgell"and —C < S;; , (14)

S;; if otherwise

Sij =

where S; ; denotes the (i, j)-elementof S, ¢ = i+ j — 1. This
algorithm fixes to satisfy the inequality constraint.

Though Algorithm 1 utilizes a rough approximation to
compute P, it provides a good solution, which can be seen
in the next section.

3. NUMERICAL EXAMPLES

This section presents numerical examples for the proposed al-
gorithm. We utilize the 4 kind of 6 second speech signal (sam-
pling frequency = 16 kHz, L = 95612 samples) of University
of Tsukuba Multilingual (UT-ML) Speech Corpus, which is
available at the web site!. We use v = 1 and e = 1074,

Thttp://research.nii.ac.jp/src/eng/list/index.html

Algorithm 1 Proposed signal declipping algorithm.
Require: y,v >0, >0
Construct Y from y.
Set S+ Y.
repeat
Sold < S
DWeZ@W+§@W)
Fy W — Pw(Wf Dw) )
aw < tI‘(FVT;/Dw)/QfV(Fw, S)
W W — aw Fw.
Dg + 2SWWT.
Fg S — PH(S — DS).
as (DY Fs) /2| FsW 2.
S (—API(S — OstSA).
until [|S' — Soual|p/[|S]|F < €
Ensure: s = [5171 SLQ e SI,N S27N

SNyN]T

which achieve the best performance. We separate 95612 sam-
ples into 212 blocks consisting of 451 samples without over-
lapping and apply the proposed algorithm 212 times.

Fig. 2 shows the declipping results in the case of the clip-
ping level C=0.2 and 0.4. We can see that the proposed algo-
rithm recovers the clipped signal well and that the declipped
signal has few large spikes. These results are available for
download at the web site?.

Next we compare the proposed algorithm with the dual-
constrained OMP based algorithm(given 6,,,,, = 1) proposed
in [3] in the case of the clipping levels C=0.2, 0.3, 0.4, 0.5,
0.6, 0.7 and 0.8. The results are shown in Fig. 3, where the
performance of the algorithms are evaluated by the signal-to-
noise ratio (SNR) computed as (15).

SNR = 20log;, & (15)
lIs — 3l

We can see that the proposed algorithm enhances the SNR
about 5.0 dB compared with the OMP based algorithm in clip-
ping level = 0.2. Fig. 4 shows the computing time. Because
the computational cost of the proposed algorithm depends on
the number of signals to estimate, the recovery for higher clip-
ping level requires less computing time. As can be seen, the
proposed algorithm is much faster than the OMP based algo-
rithm.

4. CONCLUSION

This paper deals with the signal declipping problem, which is
formulated as the matrix rank minimization problem. In or-
der to solve this problem, the linear inequality constrained and
the Hankel structured matrix rank minimization algorithm is
proposed by modifying the NSAO algorithm. Numerical ex-
amples show that the proposed algorithm can recover clipped

Zhttp://p.t1/uCkW
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Fig. 2. Declipping results of 400 samples of 95612 samples recovered by the proposed algorithm for the clipping level C=0.2
and 0.4.
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