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ABSTRACT

After a major flood catastrophe, a precious information is the
delineation of the affected areas. Remote sensing imagery,
especially synthetic aperture radar, allows to obtain a global
and complete view of the situation. However, the detection
of the flooded areas remains a challenge, especially since the
reaction time for ground teams is very short. This makes
the application of automatic detection routines appealing.
Such methods must avoid complex parametrization, heavy
computational time and long intervention by the operator.
We propose an automatic three steps strategy, starting by re-
balancing the different types of pixels (non-water, permanent
water and flooded) using digital elevation model information,
then isolating water pixels and finally separating flooded
from permanent water pixels using non-linear clustering in
dedicated feature spaces. Experiments on two sets of ASAR
images show the effectiveness of the method competing with
supervised standard log-ratio thresholding.

Index Terms— log-ratio, feature space, Synthetic Aper-
ture Radar, change detection, remote sensing, kernel methods

1. INTRODUCTION

When a major catastrophe strikes, one of the most impelling
needs is the allocation of human resources on the field. In
recent years, Earth observation has shown its potential to
provide a global image of affected regions and has been ac-
knowledged to play a major role in the allocation of human
resources. In the case of floods, that often happen in con-
junction with heavy rains and cloud cover, the recourse to
Synthetic Aperture Radar (SAR) becomes almost compul-
sory [1]: SAR imagery is not affected by weather conditions
and, since it does not rely on sunlight, can also be operated
at night. For this reasons, there has been a strong research
current dealing with the development of change (flood) de-
tection tools using this type of imagery. Among the many
techniques deployed in the literature, techniques based on
the log-ratio image have shown desirable properties and are

enabled by an easy access to reference non-flooded SAR
images. After transformation of the data, the methods rely
on automatic tresholding, modelling the distributions either
using generalized Gaussians [2], Nakagami-Gamma, Weibull
or log-normal [3] models. The unsupervised estimation of
distribution parameters can be done through Expectation-
Maximization algorithms [4].

In flood detection problems, the flood class is often
weakly represented and is therefore unseen in an histogram
of the backscattering values. Thresholding methods fitting
a certain distribution on the histogram fail at detecting the
small flood class present in the lower backscattering values
of the flooded image. For this reason, the change detection
approaches require a way of focusing automatically on water
pixels in order to be used for flood detection. In [5], an ap-
proach based on multiple tiles is proposed to detect thresholds
per tile to be more robust to this small sample problem. In [6],
flood detection is performed on a single post-event image by
segmenting the flooded region in a semi-automatic fashion
with an active contour model in conjunction with the rivers’
network. The final distinction between permanent water and
flooded regions is taken by supervised classification. In [7], a
robust segmentation of very high resolution SAR images uses
morphological profiles at multiple scales to remove speckle
noise. The final classification exploits an electromagnetic
model simulating the backscattering of the landcover types.

Digital Elevation Models (DEM) can be used to overcome
the small sample problem and improve the flood detection ro-
bustness. The probability of floods is higher in low altitude
regions, low-slope regions and concave areas, as well as in
regions close to water bodies (rivers, lakes). This information
can be integrated in a model, for example in a fuzzy classifi-
cation scheme [8].

In this paper, we propose to use a non-parametric un-
supervised approach with landscape topography as flooding
prior, followed by non-linear clustering in an appropriate Re-
producible Kernel Hilbert Spaces (RKHS) to detect flooded
areas.
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2. METHODOLOGY

Consider two registered SAR backscattering images Xt1 and
Xt2 acquired at two times steps t1 and t2. To derive the flood-
induced changes between the acquisitions, different combina-
tions of the images can be used. The widely used log-ratio,
LR = log(X

t1+a
Xt2+a ) = log(Xt1 +a)− log(Xt2 +a) = Xt1

log−
Xt2
log, with a = 0.1 to avoid infinite values, has an histogram

characterized by three modes: a major mode (LR ≈ 0) for
the unchanged pixels, a positive mode (LR >> 0) for pixels
showing an increase of backscattering and a negative mode
(LR << 0) for pixels showing a decrease of backscattering.
The latter mode corresponds to flooded pixels , which show
low backscattering values at time t2. These different modes
are extremely unbalanced, typically with a very small number
of pixels corresponding to flooded areas, when compared to
the unchanged (permanent water and non-water) pixels. Thus,
it is very difficult to fit a specific distribution to this last mode
without using prior knowledge. The proposed methodology
is a three steps strategy (see Fig. 1):

• STEP 1: Balance the classes of non-water, permanent
water and flooded by importance sampling (IS) based
on a “flooding” probability derived from DEM features
(a priori information).

• STEP 2: Isolate water pixels at t2 using clustering on
the backscattering values of Xt2

log.

• STEP 3: Separate flooded from permanent water pix-
els using non-linear clustering on the log-ratio or ratio
between the two images.

The 2D plot in Fig. 1 represents the pixels along the log-
ratio and the log-scaled image Xt2

log, respectively, as well as
the three steps described in the next sections.

2.1. Importance sampling from “flooding” probability

In flood detection problems, the pixels of interest often repre-
sent a very small percentage of the image. Moreover, in im-
ages covering large regions, it cannot be assumed that flooded
regions will represent a large fraction. In order to overcome
this small sample problem, we propose to sub-sample the im-
age according to some a priori knowledge on how a flood is
likely to happen in the different regions of the image. Floods
are more likely to happen along river networks and in regions
having specific geomorphological attributes. Flat and con-
cave regions have higher probability of being flooded [8]. We
propose a flooding probability function based on terrain al-
titude, slope and concavity, derived from a DEM and on the
proximity to water bodies.

Let us consider the altitude Z. The terrain slope is ob-
tained as the norm of the smoothed (Z̆) horizontal and verti-

cal gradient: |∇(Z)| =

√
∇h(Z̆)2 +∇v(Z̆)2 which shows

Fig. 1. 2D plot of the log-ratio and log-scaled flooded im-
age at time t2. A clustered structure can be observed between
flooded, permanent water and non-water pixels. The left his-
togram shows the typical unbalanced situation between abun-
dant non-water and water pixels (plain black) and after im-
portance sampling (IS) at STEP 1 (blue stripes), which re-
balances the histogram using flooding probability. STEP 2
isolates water pixels and STEP 3 detects the flooded pixels.

low values in flat regions. The concavity is obtained from the
difference of two Gaussians convoluted with the Z (DoG),
as in [9]. The second Gaussian bandwidth, the substracted
one, is chosen smaller than the first one to have the highest
DoG values corresponding with most concave regions. The
smoothed negative X̆t2

log indicates water proximity. These
terms are combined into a “flooding” probability with the fol-
lowing expression:

p(flooding|Z, |∇(Z)|, DoG(Z)) =
1

4
[

τ(−Z) + τ(−|∇(Z)|)
+τ(DoG(Z))

+ · τ(−(X̆t2
log))] (1)

with τ(·) a normalization operator clamping each term be-
tween 0 and 1. Each factor is equally weighted since they are
all taken as pseudo probability with equal prior. The prior
weights could be learned in a supervised setting. Here equal
prior is sufficient as initialization before performing our clus-
tering.The flooding probability from Eq. (1) is high in low
altitude, flat and concave regions close to water bodies. A
Gaussian distribution is fitted to p(flooding|...) with mean
µf and standard deviation σf . Our IS scheme takes the Nf
most probable pixels having p(flooding|...) > µf + 2σf .
In Fig. 2, examples of the different attributes and the corre-
sponding flooding probability are presented.

2.2. Isolating water areas in post-event image

The distinction of water and non-water pixels in the image
Xt2
log (see Fig. 1 STEP 2) is performed with a clustering ap-

proach. This strategy allows to perform detection in a com-
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→
(a) (b) (c) (d) (e)

Fig. 2. (a) SAR backscattering over Tewkesbury region after floods, (b) negative DEM altitude, (c) negative gradient norm, (d)
concavity and (e) resulting flooding probability.

pletely unsupervised way, since it does not require user in-
tervention to initialize the flooded region, contrarily to ac-
tive contour methods [6]. The IS step (STEP 1) described
previously facilitates the task of separating the two clusters,
since the histogram to be partitioned is less biased towards
non-water pixels. Nonetheless, a bias can still remain to-
wards non-water pixels and fitting a mixture of 2 Gaussians
or partitioning using linear k-means algorithm would still fail
at separating the two groups correctly. For these reasons,
we opted for a nonlinear clustering methods, kernel k-means,
which has already shown desirable properties in unsupervised
change detection [10].

The kernel k-means partitioning algorithm minimizes the
sum-of-square distances among the cluster center and the
samples attributed to the center in a feature space induced by
a mapping function Φ [11]. This mapping function Φ enables
the algorithm to handle non-Gaussian clusters of different
sizes. Given samples xi ∈ X, i = 1, ..., N and K cluster
centers, the within-group scattering to be minimized is

Sw =
1

N

K∑
k=1

N∑
i∈Ck

‖Φ(xi)− µk‖2 (2)

with Ck the set of samples corresponding to cluster k
and µk its center. The center can be expressed as µk =

1
Nk

∑
i∈Ck

Φ(xi). By replacing the center expression in
Eq. (2), the within-group scattering can be expressed in terms
of dot products among the mapped samples Φ(xi) and kernel
functions k(x, x) = 〈φ(x), φ(x)〉 can be applied. By doing
so, Eq. (2), scaled by N , becomes

N ·Sw = k(xi, xi)−
2

Nk

∑
j∈Zk

k(xi, xj)+
1

N2
k

∑
j,l∈Zk

k(xj , xl)

(3)

2.3. Flood detection with composite kernels

Once the water pixels have been isolated, it is possible to dis-
tinguish permanent water from flooded areas (STEP 3). This
is usually done by thresholding the log-ratio [2, 3]. However,
the optimal separation is not a vertical threshold on the log-
ratio as depicted in Fig. 1 but function of the backscattering
values of Xt2

log (diagonal separation in the figure).

To this purpose, it is common to use the ratio image: X =
Xt1

Xt2+ε , ε being added to avoid singularities, or the log-ratio
image: X = Xt1

log −Xt2
log and then to map these inputs in an

appropriate Reproducing Kernel Hilbert space (RKHS) space
using a kernel function (see Section 2.2). In the experiments,
we will refer to this strategies as ‘Input Space’, since the ra-
tios are computed directly using the original images. To be
more specific to the change detection problem, we also ex-
tended this straightforward formulation to more complex fea-
ture spaces, where the ratio images are computed directly in
the RKHS feature space [12] to provide more flexibility in
fitting the data. In the experiments, we will refer to these
strategies as ‘Feature space’.

The image ratio in the feature space can be defined as
Φ(·)ratio =

{(√γA2ϕ(Xt2))T ,(A1ϕ(Xt1))T }T√
<A2ϕ(Xt2),A2ϕ(Xt2)>

, with At a sym-

metric positive definite scaling matrix and ϕ(·) the implicit
mappings. Following this idea, the kernel is expressed as

KΦratio(xi, xj) =
K(xt1i , x

t1
j )

K(xt2i , x
t2
j ) + ε

+ γδij (4)

The regularization parameter γ = 10−8 is added to ker-
nel’s diagonal to ensure its positive definiteness.

The log-ratio image can be defined similarly to the dif-
ference image in the feature space in [12] using the log of
the images, since this is equivalent to the logarithm of the ra-
tio. The difference of the log images in the feature space is
Φ(·)log−ratio = A2ϕ(Xt2

log) − A1ϕ(Xt1
log). The associated

kernel is expressed as

KΦlog−ratio(xi, xj) =K(xt1log,i, x
t1
log,j) +K(xt2log,i, x

t2
log,j)

−K(xt1log,i, x
t2
log,j)−K(xt2log,i, x

t1
log,j)

(5)

This composition of kernels exhibits the two single time
kernels (for Xt1 and Xt2) and the cross-time kernels encod-
ing similarities between images at time t1 and t2.
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2.4. Post-processing

The spatial location of detected flooded pixels should be ex-
ploited to reduce false alarms. Since flooded regions are not
extremely localized but grouped over connected locations,
isolated pixels detected as floodedhave high chances of being
false alarms. To reduce their number, a median filter with
a window of 5x5 pixels is convoluted with the output of our
flood detection algorithm.

3. EXPERIMENTS

3.1. Data & preprocessing

To test the proposed methodology, we considered two chal-
lenging SAR datasets. Both are composed of two ENVISAT-
ASAR multilook images (150m resolution) and a DEM (30m
resolution) from ASTER:

- Kinkony: Two SAR images acquired respectively on
October 19th, 2011 during dry season and on February
16th, 2012 just after a cyclone strike in the North of
Madagascar. See top row of Fig. 3.

- Tewkesbury: Two SAR images acquired on May 30th

and on July 23rd 2007, respectively before and after
an important flood event in Gloucestershire, U.K. See
bottom row of Fig. 3.

The images and the DEM are co-registered using georef-
erenced tie points. A 3x3 Enhanced Lee filter is used to re-
duce the speckle noise in the SAR images.The number of pix-
els after sub-sampling (importance or random sampling) is set
to N = 1000. The test set consist in 8351 and 7116 pixels
respectively. The DoG standard deviations are set experimen-
tally to 8 and 6. The gradient of the altitude Z is smoothed
by a Gaussian N (0, 6). The kernels are radial basis function
(RBF) with a bandwidth parameter set to the sum of the stan-
dard deviation of the different variables. For stability reasons,
bandwidths of the dedicated kernels in a composition are set

equal to each other.
Results for both experiments are reported in terms of Co-

hen’s κ statistic in Table 1, along with the Support Vector Data
Description (SVDD) using an RBF kernel trained with 100
flooded pixels, and the standard supervised log-ratio thresh-
old maximizing the κ accuracy using a training set of 1000
labeled pixels (500 flooded and 500 non-flooded). Note that
the comparative approaches are thus eased by the presence
of labeled pixels, while our proposed method is completely
unsupervised.

3.2. Results and discussion

The IS at STEP 1 is affecting drastically the results of both
datasets, with the exception of the case considering the log-
ratio in the feature space in STEP 3: in that case better results

(a) (b) (c)

Fig. 3. (a) SAR images before the floods. (b) Flood detection
result (in light blue) using supervised log-ratio thresholding;
(c) Detection using the proposed method using the ratio in
Feature Space (Kinkony, top row) or the log-ratio in Input
space (Tewkesbury, bottom). All the detection maps are post-
processed and overlaid on the SAR image after flooding.

are obtained with random sampling. The ratio in the feature
space gives the best κ accuracy with importance sampling.
In Tewkesbury, IS strongly affects the results and leads to
better results for the ratio and log-ratio in input space only.
The variability and low results for the in ‘Feature space’ ex-
periments are due to a series of non-water pixels clustered as
water in STEP 2. These outliers result in biased separation of
flooded and permanent water clusters at STEP 3. These re-
maining pixels of non-water can induce a radically different
separation for the more complex feature mappings (ratio and
log-ratio in feature space), sometimes pushing the boundary
almost orthogonaly to the ideal separation depicted in Fig. 1.
Our unsupervised approach compared to the supervised log-
ratio thresholding reaches equivalent or better results for both
datasets. Moreover, the flood detection maps are neater with
less false alarms (see the two right columns of Fig. 3).

4. CONCLUSION

We proposed a three-steps strategy for unsupervised flood de-
tection. First, the distribution of water pixels is enhanced by
importance sampling based on a prior on topography and then
water areas are detected with nonlinear clustering. Finally,
the flooded pixels are distinguished from permanent waters
using non-linear clustering on the ratio or log-ratio images in
dedicated feature spaces through appropriate composite ker-
nels. The experiments show the benefit of importance sam-
pling prior to clustering and similar accuracies than super-
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Dataset Kinkony Tewkesbury
Ratios in Input space Feature space Input space Feature space

Ratio type ratio log-ratio ratio log-ratio ratio log-ratio ratio log-ratio

RS Raw 0.48 (0.26) 0.32 (0.38) 0.26 (0.40) 0.86 (0.08) 0.48 (0.01) 0.48 (0.02) 0.34 (0.16) 0.41 (0.05)
PP 0.48 (0.25) 0.32 (0.38) 0.25 (0.40) 0.93 (0.06) 0.53 (0.01) 0.53 (0.02) 0.36 (0.19) 0.51 (0.07)

IS Raw 0.96 (0.01) 0.93 (0.02) 0.98 (0.01) 0.39 (0.41) 0.64 (0.00) 0.67 (0.00) 0.45 (0.03) 0.32 (0.03)
PP 0.97 (0.01) 0.95 (0.02) 0.99 (0.01) 0.38 (0.42) 0.68 (0.00) 0.72 (0.00) 0.47 (0.03) 0.32 (0.03)

LR Raw 0.97 (0.01) 0.64 (0.01)
LR PP 0.98 (0.00) 0.71 (0.00)

SVDD Raw 0.97 (0.00) 0.63 (0.00)
SVDD PP 0.98 (0.00) 0.70 (0.00)

Table 1. Averaged κ over 10 random runs. RS: Random Sampling, IS: Importance Sampling, LR: log-ratio thresholding
(supervised), PP: post-processed (Section 2.4), SVDD trained with 100 samples.

vised log-ratio thresholding. Future research will consider the
robustness of the two first steps for the definition of the com-
plex feature spaces, the use of other clustering algorithms and
the extension to very-high resolution SAR images.
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(C. Küchler). The authors also would like to acknowledge
Philippe Bally (ESA) for granting us the access to SAR data.

6. REFERENCES

[1] S.B. Serpico, S. Dellepiane, G. Boni, G. Moser, E. An-
giati, and R. Rudari, “Information extraction from re-
mote sensing images for flood monitoring and damage
evaluation,” Proc. of the IEEE, vol. 101, no. 3, pp. 631–
651, 2012.

[2] Y. Bazi, L. Bruzzone, and F. Melgani, “An unsupervised
approach based on the generalized Gaussian model to
automatic change detection in multitemporal SAR im-
ages,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4,
pp. 874–887, 2005.

[3] G. Moser and S.B. Serpico, “Generalized minimum-
error thresholding for unsupervised change detection
from SAR amplitude imagery,” IEEE Trans. Geosci.
Remote Sens., vol. 44, no. 10, pp. 2972–2982, 2006.

[4] G. Moser and S.B. Serpico, “Unsupervised change de-
tection from multichannel SAR data by Markovian data
fusion,” IEEE Trans. Geosci. Remote Sens., vol. 47, no.
7, pp. 2114–2128, 2009.

[5] S. Martinis, A. Twele, and S. Voigt, “Unsupervised ex-
traction of flood-induced backscatter changes in SAR

data using Markov image modeling on irregular graphs,”
IEEE Trans. Geosci. Remote Sens., vol. 49, no. 1, pp.
251–263, 2011.

[6] D.C. Mason, R. Speck, B. Devereux, G.J.P. Schumann,
J.C. Neal, and P.D. Bates, “Flood detection in urban
areas using TerraSAR-X,” IEEE Trans. Geosci. Remote
Sens., vol. 48, no. 2, pp. 882–894, 2010.

[7] L. Pulvirenti, M. Chini, N. Pierdicca, L. Guerriero, and
P. Ferrazzoli, “Flood monitoring using multi-temporal
COSMO-SkyMed data: Image segmentation and signa-
ture interpretation,” Remote Sens. Enviro., vol. 115, no.
4, pp. 990–1002, 2011.

[8] N. Pierdicca, M. Chini, L. Pulvirenti, and F. Macina,
“Integrating physical and topographic information into
a fuzzy scheme to map flooded area by SAR,” Sensors,
vol. 8, no. 7, pp. 4151–4164, 2008.

[9] L. Foresti, D. Tuia, M. Kanevski, and A. Pozdnoukhov,
“Learning wind fields with multiple kernels,” Stoch.
Env. Res. Risk. Ass., vol. 25, no. 1, pp. 51–66, 2011.

[10] M. Volpi, D. Tuia, G. Camps-Valls, and M. Kanevski,
“Unsupervised change detection with kernels,” IEEE
Geosci. Remote Sens. Lett., vol. 9, no. 6, pp. 1026–1030,
2012.

[11] M. Girolami, “Mercer kernel-based clustering in feature
space,” IEEE Trans. Neural Netw., vol. 13, no. 3, pp.
780–784, 2002.

[12] G. Camps-Valls, L. Gómez-Chova, J. Muñoz-Marı́,
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