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ABSTRACT

This communication addresses the problem of the Non-

Unitary Joint Block Diagonalization (NU− JBD) of a given

set of complex matrices. This problem occurs in various fields

of applications, among which is the blind separation of con-

volutive mixtures of sources. We present a new method for

the NU− JBD based on the Levenberg-Marquardt algorithm

(LMA). Our algorithm uses a numerical diagram of optimiza-

tion which requires the calculation of the complex Hessian

matrices. The main advantages of the proposed method stem

from the LMA properties: it is powerful, stable and more ro-

bust. Computer simulations are provided in order to illus-

trate the good behavior of the proposed method in different

contexts. Two cases are studied: in the first scenario, a set

of exactly block-diagonal matrices are considered, then these

matrices are progressively perturbed by an additive gaussian

noise. Finally, this new NU− JBD algorithm is compared

to others put forward in the literature: one based on an opti-

mal step-size relative gradient-descent algorithm [1] and one

based on a nonlinear conjugate gradient algorithm [2]. This

comparison emphasizes the good behavior of the proposed

method.

Index Terms— Joint block-diagonalization algorithms,

complex Hessian Matrices, Levenberg-Marquardt algorithm.

1. INTRODUCTION

In the recent years, the problem of the joint decomposition of

matrix (or tensor) sets has often arisen in the signal process-

ing field, especially in blind source separation and array pro-

cessing applications. One of the first considered problem was

the Joint Diagonalization (JD) of a given matrix set under

the unitary constraint, leading to the nowadays well-known

JADE (Joint Approximate Diagonalization of Eigenmatrices)

[3] and SOBI (Second Order Blind Identification) [4] algo-

rithms. The following works have addressed either the prob-

lem of the JD of tensors [5][6] or the problem of JD of ma-

trices but discarding the unitary constraint [7][8][9][10]. This

first particular type of matrix decomposition is useful both

in sources localization and direction finding problems and in

blind sources separation of instantaneous mixtures.

A second type of matrix decompositions, namely joint

zero-diagonalization, has proven to be useful in blind source

separation, telecommunication [11] and cryptography [12].

The first suggested algorithms operated under the unitary

constraint [13], since they were applied after a classical pre-

whitening stage. But such a preliminary pre-whitening step

establishes a bound with regard to the best reachable per-

formances in the context of BSS that is the reason why the

unitary constraint was soon discarded, leading to several

solutions.

A third type of matrix decompositions, namely the joint

block-diagonalization, is encountered both in the wide-band

sources localization in the presence of a correlated noise and

in the blind separation of convolutive mixtures (or multi-

dimensional deconvolution) problems. Several algorithms

have been developed, under different assumptions about the

considered matrix set (the matrices can be either positive

definite or hermitian) and about the block-diagonalizer (it is

assumed unitary [14][15] or not [1][2][16] [17]).

In this communication, we present a new approach for

the NU− JBD based on a Levenberg-Marquardt optimiza-

tion scheme. It requires that quantities such as the Hessian

matrices are calculated. The most important advantage of this

approach is that it is general (the considered matrices are com-

plex and not necessarily hermitian and the block-diagonalizer

is not necessarily an unitary matrix) and robust.

2. PROBLEM STATEMENT

2.1. Non-unitary joint block-diagonalization problem

The problem of the non-unitary joint block diagonalization is
stated in the following way [1][16]. We consider a set M of

EUSIPCO 2013 1569741039
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Nm (Nm ∈ N∗) square matrices Mi ∈ CM×M , for all i ∈
{1, . . . , Nm} which all admit the following decomposition,

Mi = ADiA
H , (1)

where (·)H stands for the transpose conjugate operator and

the matrices Di =
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, for

all i ∈ {1, . . . , Nm} are (N × N) block diagonal ma-

trices with r the number of considered blocks (r ∈ N∗),

Di,jj , i ∈ {1, . . . , Nm}, j ∈ {1, . . . , r} are (nj × nj) square

matrices so that n1 + . . . + nr = N where 0ij denotes the

(ni × nj) null matrix. A is a M × N (M ≥ N ) full rank

matrix and the N×M matrix B is its pseudo-inverse (or gen-

eralized Moore-Penrose inverse). The set of the Nm square

matrices Di ∈ CN×N is denoted by D. The block sizes nj

for all j = 1, . . . , r are assumed known.
The NU− JBD problem consists of estimating the matrix

A and the block-diagonal matrix set D from only the ma-
trix set M. Several cases were explored for matrix A and
Mi: the case of an unitary matrix A has been considered
in [15] where a first solution is developped. More recently,
other solutions have been suggested in [1][2][16][18], for a
non-unitary matrix A and under different assumptions about
the matrix set M. To tackle that problem, we propose, here,
to consider the following cost function like in [1][16] (in [2]
another cost function is used). The reason is that it enables to
simplify the calculations:

CBD(B) =

Nm
∑

i=1

‖OffBdiag(n){BMiB
H}‖2F , (2)

where the matrix operator OffBdiag(n){.} is defined in the

following way:

OffBdiag(n){M} =
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. (3)

where M is a N ×N square matrix whose components Mij

for all i, j = 1, . . . , r are nj×nj matrices (andn1+. . .+nr =
N ). We denote by n = (n1, n2, . . . , nr). From now on, the

notation OffBdiag(n){.} is simplified into OffBDiag{·}.

3. A NEW JOINT BLOCK-DIAGONALIZATION

ALGORITHM

The cost function given in Eq. (2) has to be minimized in or-

der to estimate the matrix B ∈ CN×M . To do this, we suggest

a new algorithm based on a Levenberg-Marquardt approach

[19]. In the literature, the Levenberg-Marquardt optimization

method is well-known for its robustness and its effectiveness.

It has been widely used in various fields (e.g. neural networks

[20], array processing, blind sources separation and so on).

3.1. Principle

We propose, here, to use a Levenberg-Marquardtoptimization
scheme [19] to minimize the cost function given by Eq. (2) in
order to estimate the block-diagonalizer matrix B. It means

that B is re-estimated at each iteration m. From now on, it is
denoted by B(m). This matrix can be stored in a vector b(m)

which is obtained by b(m) = vec
(

B(m)
)

, where vec(.)

is the vec-operator (applied on a matrix B(m) ∈ CM×N

it stacks its columns into a column vector belonging to

C(M×N)×1). This vector is, thus, updated according to the
following adaptation rule for all m = 1, 2, ...,

b(m) = b(m−1) − µ
[

H(m−1) + λIM2

]

−1
g(m−1), (4)

where [·]−1 denotes the inverse of a matrix, λ is positive a
small damping factor. µ is small positive factor called the
step-size, in our case µ = 1, IM2 is the M2 × M2 identity
matrix, H is the Hessian matrix of CBD(B). The vector g is

defined as g = vec
(

∇aCBD

(

B(m−1)
))

where ∇aCBD(B)
stands for the complex (absolute) gradient matrix. It was pre-
viously calculated in [1] and found to be equal to:

∇aCBD (B) = 2

Nm
∑

i=1

(

OffBdiag{BMiB
H}

)

BMH
i

+ 2

Nm
∑

i=1

(

OffBdiag{BMiB
H}

)H

BMi. (5)

If (·)T stands for the transpose operator and (·)∗ for the con-
jugate operator, we now have to calculate the four complex
Hessian matrices that are defined in [21] as:

HB,B∗ (CBD(B)) =
A0,0 +AT

1,1

2
=

[

HB∗,B (CBD(B))
]T

,

HB∗,B∗ (CBD(B)) =
A0,1 + A

T
0,1

2
,HB,B (CBD(B)) =

A1,0 + A
T
1,0

2
,

(6)

To that aim, we have to derive the expression of d2CBD(B)
which is written as:

d2CBD(B) =
[

dvecT (B∗), dvecT (B)
]

[

A0,0,A0,1

A1,0,A1,1

][

dvec(B)

dvec(B∗)

]

.

(7)
The four complex matrices A0,0, A0,1, A1,0 and A1,1 in-

volved in this expression are shown to be equal to (see the
Appendix for the detailed calculations),

A0,0 =
(

MH
i BH ⊗ IN

)

TBoff (BMi ⊗ IN )

+
(

MiB
H ⊗ IN

)

TBoff

(

BMH
i ⊗ IN

)

+
(

Mi ⊗
(

OffBdiag{BMiB
H}

))

+
(

MH
i ⊗

(

OffBdiag{BMH
i BH}

))

. (8)

A0,1 = (Tvec)
T
((

IN ⊗MT
i BT

)

TBoff

(

B∗MT
i ⊗ IN

)

+
(

IN ⊗M∗

iB
T
)

TBoff (B
∗M∗

i ⊗ IN )
)

. (9)

A1,0 = (Tvec)
T
((

IN ⊗MiB
H
)

TBoff (BMi ⊗ IN )

+
(

IN ⊗MH
i BH

)

TBoff

(

BMH
i ⊗ IN

))

. (10)

A1,1 =
(

M∗

iB
T ⊗ IN

)

TBoff

(

B∗MT
i ⊗ IN

)

+
(

MT
i BT ⊗ IN

)

TBoff (B
∗M∗

i ⊗ IN )

+
(

MT
i ⊗

(

OffBdiag{BMiB
H}

))

+
(

M∗

i ⊗
(

OffBdiag{BMH
i BH}

)

∗
)

. (11)

where the operator ⊗ denotes the Kronecker product, Tvec

is a permutation square matrix of size (MN × MN) and
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TBoff = IN2−TDiag, is the N2×N2 “transformation” matrix,

with TDiag = diag{vec(BDiag{1N})}, 1N is the N×N ma-

trix whose components are all ones, IN2 = Diag{1N2} is the

N2 × N2 identity matrix, and Diag{a} is a square diagonal

matrix which contains the elements of the vector a.

3.2. Summary

The principle of the proposed non-unitary joint block diago-

nalization algorithm (denoted JBDLM) is summarized in the

following table,

Denote the Nm square matrices as M1,. . ., MNm
.

Given initial estimate B(0).
Given initial estimate for damping value λ(0).
For m = 1, 2, . . .

- Compute ∇aCBD (B) whose expression is given

by Eq. (5).

- Compute the four complex Hessian matrices whose

expressions are given by Eq. (6).

- Compute the error e(m).

- Compute the updated solution whose expression is

given by Eq. (4).

- Evaluate the error at the updated parameter elm.

If e(m) ≥ elm,

λ(m) = λ(m−1)

10 , e(m) = elm.
Else,

λ(m) = 10λ(m−1).

EndIf

- Stop after a fixed number of iterations or when

|B(m) − B(m−1)| ≤ ε where ε is a small positive

threshold.

EndFor

4. COMPUTER SIMULATIONS

We present simulations to illustrate the effectiveness of the
suggested algorithm. We consider a set D of Nm = 2, 10 and
100 matrices, randomly chosen (according to a Gaussian law)
of mean 0 and variance 1. Initially these matrices are exactly
block-diagonal, then a random noise matrix of mean 0 and
variance σ2

b is added. The signal to noise ratio is defined as

SNR = 10 log( 1
σ2
b

). To measure the quality of the estimation,

the ensuing performance index (which is an extension of the
one introduced in [6]) is used,

Iconv(G) =
1

r(r − 1)





r
∑

i=1





r
∑

j=1

‖(G)i,j‖
2
F

max
ℓ

‖(G)i,ℓ‖
2
F

− 1





+

r
∑

j=1





r
∑

i=1

‖(G)i,j‖
2
F

max
ℓ

‖(G)ℓ,j‖
2
F

− 1







 ,

where (G)i,j for all i, j ∈ {1, . . . , r} is the (i, j)-th block

matrix of G = B̂A. The better results are obtained when the

index performance Iconv(·) is found to be close to 0 in linear

scale (−∞ in logarithmic scale). All the displayed results

have been averaged over 100 Monte-Carlo trials.

First, we compare the results (in terms of performance in-

dex) obtained thanks to the three algorithms JBDORG (Opti-

mal Relative Descent-Gradient) [1], JBDCG (Non-linear Con-

jugate Gradient) [2] and the proposed algorithm JBDLM ver-

sus the number of iterations for number of blocks r = 2
for different numbers of matrices (Nm = 2, Nm = 10 and

Nm = 100). The obtained results are displayed in the Fig.1

in a noiseless context (SNR = 100 dB) whereas, in the Fig.2

the same study is performed in a noisy context (SNR = 40
dB). All these methods were initialized using the generalized

eigenvalue decomposition [2].
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Fig. 1. Performance index versus number of iterations for number

of matrices : Nm = 2, Nm = 10 and Nm = 100, number of blocks

r = 2 and SNR = 100 dB.
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Fig. 2. Performance index versus number of iterations for number

of matrices : Nm = 2, Nm = 10 and Nm = 100, number of blocks

r = 2 and SNR = 40 dB.

In the noiseless case, the JBDLM algorithm outperforms

the two other algorithms (JBDCG, JBDORG) for Nm = 2
(resp. 10 and 100), −101 dB instead of −96 dB and −98 dB

(resp.−113 dB instead of −104 dB and −108 dB and −124
dB instead of −112 dB and −113 dB). In the noisy context

(SNR = 40 dB) for different number of Nm = 2 (resp. 10
and 100), JBDLM outperforms JBDCG, JBDORG. JBDLM and

JBDORG reach nearly the same performances which is not sur-

prising since these two algorithms minimize the same cost

function. −35 dB is reached instead of −31 dB for JBDCG

(resp. -50 dB (JBDLM) instead of −42 (JBDCG) dB and −47
dB (JBDORG) and −61 dB instead of −53 dB and −58 dB).

Then, we show the influence of the size Nm of the matrix

set to be block-diagonalized. We display the evolution of the

performance index versus the number of matrices Nm for the

number of blocks r = 2 and 4 in a noiseless context in the

Fig.3 and in the noisy context in the Fig.4.
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Fig. 3. Performance index versus number of matrices for size of

blocks: r = 2, r = 4 and SNR = 100 dB.
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Fig. 4. Performance index versus number of matrices for size of

blocks: r = 2, r = 4 and SNR = 40 dB.

These charts illustrate the good behavior of the proposed

algorithm. We observe a decrease in the performances when

smaller subsets of matrices are used, even though the results

remain relatively good.

5. CONCLUSION

In this communication, we have suggested a new NU− JBD

algorithm called JBDLM. It relies on a Levenberg-Marquardt

optimization scheme which requires the calculation of the

complex Hessian matrices. The main advantage of the

JBDLM is that it offers the best performances in compli-

cated situations (noisy cases, and/or few matrices to be joint

block-diagonalized). Extensions for future research would be

to demonstrate the interest of this algorithm in a true blind

multi-dimensional deconvolution context (blind separation of

convolutive mixtures of sources).

APPENDIX

Considering four square matrices D1, D2, D3 of size M×M
and D4 of size N ×N . tr {·} denotes the trace operator. Our
developments are based on the following properties [21][22],

P1. ‖OffBdiag{D1}‖2F = tr
{

DH
1 OffBdiag{D1}

}

.

P2. tr {D1) = tr
{

DT
1

}

.

P3. tr {D1 +D2} = tr {D1}+ tr {D2}.

P4. tr {D1D2D3} = tr {D3D1D2} = tr {D2D3D1}.

P5. tr
{

DH
1 D2

)

= (vec (D1))
H vec (D2).

P6. d (tr {D1}) = tr {d (D1)}.

P7. vec (D1 +D2) = vec (D1) + vec (D2).

P8. vec (D1D2D3)=
(

DH
1 ⊗D1

)

vec (D2).

P9. vec
(

DT
1

)

=Tvecvec (D1).

P10. vec (OffBdiag{D1}) = TBoffvec (D1).
P11. d (vec (D1}) = vec (d (D1)).

P12. (D1 ⊗D2)
T = DT

1 ⊗DT
2 .

P13. (D1 ⊗D2)
H = DH

1 ⊗DH
2 .

P14. (D1 ⊗D2) (D3 ⊗D4) = (D1D3 ⊗D2D4).

The second-order derivative of the cost function (Eq. (2)) is
defined like in [21],
d2CBD(B) = dDB (CBD(B)) dvec(B) + dD∗

B (CBD(B)) dvec(B∗),
(12)

where DB (CBD(B)) and D∗
B (CBD(B∗)) are the Jacobian

matrices of the CBD(B), defined like in [21],

DB (CBD(B)) = vecT
(

∂CBD(B)

∂B

)

,

D∗

B (CBD(B)) = vecT
(

∂CBD(B)

∂B∗

)

. (13)

The partial derivatives
∂CBD(B)

∂B
and

∂CBD(B)
∂B∗

of the cost

function CBD(B) (2) are calculated in [1],

∂CBD(B)

∂B
=

Nm
∑

i=1

(

OffBdiag(n){BMiB
H}

)T

B∗M∗

i

+

Nm
∑

i=1

(

OffBdiag{BMiB
H}

)

∗

B∗MT
i , (14)

∂CBD(B)

∂B∗

=

Nm
∑

i=1

(

OffBdiag{BMiB
H}

)

BMH
i

+

Nm
∑

i=1

(

OffBdiag{BMiB
H}

)H

BMi. (15)

Using the previous properties (P1, P2, ..., P14) and the ex-

pression of the partial derivatives
∂CBD(B)

∂B
(14) and

∂CBD(B)
∂B∗

(15), the derivate of the Jacobian matrices can be expressed
as,

dDB (CBD(B)) =

Nm
∑

i=1

vecT (dB)
[

(Tvec)
T
(

IN ⊗MiB
H
)

TBoff (BMi ⊗ IN )

+ (Tvec)
T
(

IN ⊗MH
i BH

)

TBoff

(

BMH
i ⊗ IN

)]

+vecT (dB∗)
[(

MH
i BH ⊗ IN

)

TBoff (BMi ⊗ IN )

+
(

MiB
H ⊗ IN

)

TBoff

(

BMH
i ⊗ IN

)

+
(

Mi ⊗
(

OffBdiag{BMiB
H}

))

+
(

MH
i ⊗

(

OffBdiag{BMH
i BH}

))]

, (16)

dD∗

B (CBD(B)) =

Nm
∑

i=1

vecT (dB∗)
[

(Tvec)
T
(

IN ⊗MT
i BT

)

TBoff

(

B∗MT
i ⊗ IN

)

+ (Tvec)
T
(

IN ⊗M∗

iB
T
)

TBoff (B
∗M∗

i ⊗ IN )
]

+vecT (dB)
[(

M∗

iB
T ⊗ IN

)

TBoff

(

B∗MT
i ⊗ IN

)

+
(

MT
i BT ⊗ IN

)

TBoff (B
∗M∗

i ⊗ IN )

+
(

MT
i ⊗

(

OffBdiag{BMiB
H}

))

+
(

M∗

i ⊗
(

OffBdiag{BMH
i BH}

)

∗
)]

. (17)
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So from Eq. (7) and Eq. (12), it leads to the results stated

by Eqs. (8, ..., 11). Finally, we can express the four complex

Hessian matrices in the form of Eq. (6).
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