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ABSTRACT

In this paper, we proposed a novel inpainting method
where we use a multi-scale approach to speed up the well-
known Markov Random Field (MRF) based inpainting method.
MRF based inpainting methods are slow when compared
with other exemplar-based methods, because its computa-
tional complexity is O(|L|2) (L feasible solutions’ labels).
Our multi-scale approach seeks to reduce the number of the
L (feasible) labels by an appropriate selection of the labels
using the information of the previous (low resolution) scale.
For the initial label selection we use local statistics; moreover,
to compensate the loss of information in low resolution levels
we use features related to the original image gradient.

Our computational results show that our approach is com-
petitive, in terms reconstruction quality, when compare to the
original MRF based inpainting, as well as other exemplar-
based inpaiting algorithms, while being at least one order of
magnitude faster than the original MRF based inpainting and
competitive with exemplar-based inpaiting.

Index Terms— inpainting, multi-scale, local statistics,
Markov Random Field

1. INTRODUCTION

Image inpainting, an ancient art itself [1], is a technique of
modifying (reparing) an image in an undetectable form. Orig-
inally, its key objective was to fill-in the missing or damaged
parts of the artistic work, and to restore its unity. In time,
movies, photographs and other type of visual works have been
digitized, so digital inpainting applications emerged, such as
scaling-up images by superresolution, reconstructing old pho-
tographs, and removal of overlaid text or graphics.

Image inpainting methods can be classified in diffusion-
based and patch-based. In [1], holes in the images are filled
by diffusing linear structure of surrounding regions along
isophote direction. Inspired by this diffusion method, nu-
merous models, including variational approaches [2] and
curvature-driven diffusion (CDD) [3], are incorporated into
inpainting task. However, diffusion-based methods can only
fill small gaps (i.e. scrathes), mostly, on non-textured images.

On the other hand, patch-based approaches ([4], [5]) are
proposed to address inpainting problems with large missing
image portions. Similar to well studied domain texture syn-
thesis ([6], [7]), their results can be generated by sampling
and copying the best matching color values from known re-
gions to missing regions at patch level.

Even though, common patch-based methods generate bet-
ter results than diffusion-based, they are greedy methods, and
thus, inpainted images may present visual inconsistencies. To
overcome this limitation, global optimization models have
been proposed and the state-of-the-art models are based on
Markov Random Fields (MRF) ([8], [9], [10], [11]).

In this paper, we proposed a computational efficient
method for image inpainting based on a multi-scale approach.
Our multi-scale approach, which is different from the prune
method proposed by [12], first performs a label selection
based on (simple) local statistics. Then, using a multi-scale
approach, we reduce the number of possible solutions while
preserving the texture information in lower levels, thus fake
local minima are avoided. This procedure gives a substantial
speedup when compared with previous methods.

The paper is organized as follows. In Section 2 we briefly
review the well-known Markov Random Field (MRF) based
inpainting method as well as some of its improvements. Then
our proposed method is described in Section 3. Experiments
and computational results are presented in Section 4. Finally,
we give our concluding remarks in Section 5.

2. MARKOV RANDOM FIELD (MRF) MODEL AND
GLOBAL OPTIMIZATION PROBLEM

In this section we summarily describe [10] a MRF solution
to the inpainting problem on which our proposed algorithm is
based. We also briefly mention some improvements to [10] as
well as other works that also include multi-scale approaches.

2.1. Markov Random Field Model for image inpainting

Given an input image, it is assumed that it could be divided
in two regions: known or source region (Φ), and region to be
filled or target (Ω). The target region is modeled as a group
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of nodes with a horizontal and vertical spacing of (hn, wn)
pixels respectively. An undirected graph is constructed G =
(ν, ε), where the set ν = {πk}Nk=1 correspoding to all MRF
nodes. ε is the set of all edges connecting adjacent MRF
nodes and consist of 4-neighborhood system (see Figure 1a).
Let Lk = {l1, . . . , ln} denote the sample labels of node πk
such that Lk ∈ Φ. The idea is to find optimal labels can-
didate configuration Λ = {l∗1, . . . , l∗N}; in this context, as-
signing optimal labels l∗k to a node πk is the same as copy-
ing the patch over the node’s position. Let Vp(lp) denote the
data cost such that Vp = SSD(Ψp, lp) , where SSD is the
sum of squared differences and Ψp is the original patch cen-
tered at node πp, and lp is a sample label of node πp; and let
Vpq denote the pairwise potential between neighbour nodes
(πp, πq) such that Vpq = SSD(lp, lq) in their overlap region
(see figure 1b). Therefore, based on MRF model and these
definitions, the energy function was defined as follow:

E(Λ) =
∑
p

Vp(lp) +
∑
p,q

Vpq(lp, lq) (1)

(a) MRF image model (b) MRF potentials

Fig. 1: (a) MRF image model. Red dots are MRF nodes πk,
and black lines are edges ε. Ψk is the original patch of size
h,w centered at node πk and sample label is lk ∈ Lk. (b) Data
cost Vk is calculated over yellow region. Pairwise potential
Vpq is calculated over orange region

The cost function (1) is minimized using an iterative algo-
rithm called max-product Belief Propagation [8]. Let denote
N(p) be the neighbourhood of node p. During each iteration
nodes give ”opinions” by passing messages to their neigh-
bourhood. In this formulation, the message from node πp to
node πq in graphG can be denoted asmpq(lq) , which reflects
how likely node πp ”believes” node πq should be assigned la-
bel lq . The updated message is given by

mt
pq(lq) = min

{
V p(lp) + V pq(lp, lq) +

∑
r 6=q,r∈N(p)

mt−1
rp (lp)

}
(2)

Once all messages have converged, each node πp collect
the messages from its neighbourhood and compute their belief
(4) which represents the probability of assigning label lp to
node πp. Finally, the optimal labels are found by (3):

l∗p = argmax{b(lp)} (3)
b(lp) = −Vp(lp)−

∑
r∈N(p)mrp(lp) (4)

2.2. Priority-BP

Belief propagation (BP) is a slow algorithm. If |L| denotes the
total number of labels then the BP computational complexity

is given by O(|L|2). In [12] a new approach, called priority-
BP, was proposed to reduce BP’s complexity: at each itera-
tion, the algorithm executes ForwardPass and then Backward-
Pass; the ForwardPass declare nodes, at the beginning, as un-
committed and visit them in order of highest priority, declar-
ing as committed, prunning their lables, sending messages to
their neighbour uncommitted nodes and updating their beliefs
and priorities as well; the BackwardPass nodes are visited in
reverse order, declaring uncommitted, sending messages to
their neighbour committed nodes, and updating belief and
priorities. The computational complexity of priority-BP is
O(|Lmax|),Lmax � |L|, where Lmax is defined by the user.

2.2.1. Shortcomings of Priority-BP

The prune method proposed by [12] is still somewhat inef-
ficient because all possible labels are considered, which im-
plies more memory and more computation time. Thus, some
authors have proposed to perform a label selection as a first
step. For example, in [13] it was proposed to use statistics of
patch offset matching similar patches in the known region and
obtaining their offsets.On the other hand, in [14] it was pro-
posed a context-aware label selection, which limits the search
for labels to the areas of interest based on contextual informa-
tion using Gabor-based and color descriptors.

2.3. Other multi-scale approches

Standard MRF-based image inpainting algorithms are of
limited practical use when the input image is bigger than
512x512. Some published works have proposed multi-scale
solutions ([12], [9]), but they report lower quality results (than
standard MRF-based image inpainting methods) because of
fake local minimals. However, in [11] it was proposed to
use the gradient information as aditional descriptor (SURF -
descriptors [15]) while working with a multi-scale approach
which improve the overall performance.

3. PROPOSED ALGORITHM

Based on the description of [12] as well as on the relation be-
tween label selection and speed-up (Section 2.2), in this Sec-
tion we proposed a simple procedure based on a multi-scale
framework, and it is summarized in Algorithm 1. The main
characteristics of our method are (i) the label selection using
local statistics in step 1, (ii) the multi-scale pruning process in
step 2 and (iii) a new scheme of priorities for label selection
and pruning process.

3.1. Label selection

We proposed to guide the label selection using local statis-
tics. To that end, we use [16], where a simple method was
proposed to estimate the noise variance (of the observed im-
age) based only on its local variance; the local variance is
computed using a window centered at pixel p; however, it is
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possible to get information about other features such as tex-
ture or edges if the window size is big enough.

The label selection is performed in a similar way as the
Forward Pass in Priority-BP algorithm. Declaring nodes, at
the beginning, as uncommitted and visiting them in order of
highest priority, declaring as committed, selecting their lables
and updating priorities. We proposed a new scheme of pri-
orities based on local variance and a confidence term that
measures the known information in source patch Ψk (simi-
lar ideas have been used in [4]). Let σ2

k = var{k} denote
the local variance of the pixel k ∈ ΩC . Note that each σ2

k is
a 3-dimensional vector (σ2

k = [σ2
kR
, σ2
kG
, σ2
kB

]). And also let
V (k) and C(k) denote the variance and confidence term, and
P (k) the priority of node πk. They are calculated as follows:

C(k) =
|Ψk ∩ Φ|
| Ψk |

, V (k) =
‖σ2

k‖2
Vmax

(5)

P (k) = (1− λ)C(k) + λV (k) (6)

where the operator |x| defines the number of elements of x,
Vmax = max

πk

V (k) and λ ∈ [0, 1] . For each node πk we cal-

culate local variance using only known information near the
node Ψk ∩ Φ. During the label selection process is necessary
to check whether a node is reliable or not, so ifC(k) ≥ τ then
σ2
k = var{Ψk ∩ Φ}, else we re-estimated the local variance

of node πk using (7), where T = |N(k)|+ 1.

σ2
k =

∑
i=q∈{N(k)∪{k}}

σ2
i

T
, dk = ‖σ2

RGB − σ2
k‖2. (7)

Let σ2
RGB denote the local variance vector of the input

image such that σ2
RGB := {var{p} : p ∈ Ψ}. In order to

perform the label selection of node πk we first compute the
distance vector dn between local variance image σ2

RGB and
σ2
k (7). The distance dn is described by unimodal histogram

(hn), thus, it is possible to find a threshold τh using the uni-
modal thresholding algorithm described in [17]. Finally, the
set of labels of node πk is denoted by Lk = {l1, . . . , ln} such
that ln is the patch centered at pixel p ∈ ΩC which satisfy the
condition dn ≤ τh.

3.2. Pixel decriptors

Following similar ideas, as in [11], we use SURF-gradient
descriptors for the texture information of high-resolution im-
age while working with at lower levels; SURF-gradient de-
scriptors tend to be very useful for differentiating between
geometric structures (edges) because of their robustness and
simplicity, and in [11] it has been shown that these descriptors
give good results in multi-scale setting. When we are at Lth
low-resolution level, each pixel p will be described by color
and texture features, as follows

UL(p) = {r(p), g(p), b(p), gx(p), gy(p), Gx(p), Gy(p)}

where UL denotes the low resolution image. The first three
components are the color information, and the last four are the
texture information, in [11] it was described how to calculate
the texture components. In our algorithm, we use this pixel
representation to compute data cost Vp and pairwise potential
Vpq at low-resolution levels. In practice, when working on the
original image we only use color descriptors due to gradient-
based descriptors are zero.

Algorithm 1: Multi-scale Image Inpainting

Initialization at level M .1

Perform label selection.
Belief based label pruning.
Propagate the remaining labels to the upper level.
Multiresolution Pruning .2

for k ←M − 1 : 1 do
Similarity based label pruning.
Propagate the remaining labels to the upper level.

At level zero .3

Similarity based label pruning .
Priority-BP algorithm .
Perform hole filling.

3.3. Multi-scale image inpainting

As mentioned before, we use local variance based segmen-
tation to select labels Lk for each lowest resolution node πk.
Then, at this level we perform one iteration ForwardPass from
priority-BP algorithm [12] in order to have a compact and
high-confidence set of labels for each node. In the upper lev-
els, the pruning process follows the one described in [14], in a
similar fashion as one iteration ForwardPass, nothing that in
[12] similarities rather than beliefs are use as a measure in the
pruning process. Let Sp(lp) denote the similarity such that
initially Sp(lp) = Vp(lp),∀lp ∈ Lk. Once both priorities and
similiraties of all nodes have been initalized, ”ForwardPass”
is executed. The similarity update equation is defined by (8)

Sq(lq) = Sq(lq) +min

{
Vpq(lp, lq)

}
,∀lq ∈ Lj , (8)

where Lj is the set of labels of neighbour node πj of πk.
In either case Belief or Similarity based label pruning, it is
necessary to have a priority scheme wich have influence in
the quality of the image inpainting problem in general. For
each node πk, we proposed to combine the belief/similarity
based term with the confidence term using (9):

P (k) = (1− λ)C(k) + λpb,s(k), (9)

where pb,s is the priority using beliefs [12] or similarities [14].
With this new scheme we ensure that the nodes near the miss-
ing region boundaries are the most confident about its labels.
Note that only the confidence term will not change during
each iteration of pruning process, while the other term will be
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(a) Inputs (b) results of [4] (c) results of [12] (d) proposed (WLS) (e) proposed (LS)

Fig. 2: Inpainting results for ”Giraffe” (320x213), ”Ship” (466x316) and ”Elephant” (339x225) via [4], [12], our method
without label selection (WLS) and with label selection (LS).

updated. After pruning proccess in all low resolution level,
we propagate the remaining labels to the upper levels such
that we have a better label selection using a window search
around the propagated label. Finally, in the original image
we perfom the Priority-BP algorithm to get the final label for
each node.

4. EXPERIMENTS AND RESULTS

The proposed image inpainting method has been tested in a
number of natural images. Number of levels, patch radius
for MRF model (w) and label selection (wv) are defined by
the user. The test images presented (see Fig. 2), are (from
top to bottom) ”Giraffe” (320x213), ”Ship” (466x316) and
”Elephant” (339x225). In our experiments the patch radius
in each level increase by the factor of two for ”Giraffe” and
”Elephant”, and in ”Ship” the factor is 1.8 . We used the same
w for all the methods, w = 16. For our multi-scale approach
we used three levels, while wv were wv = 3, wv = 4 and
wv = 5 respectively, and the maximum number of labels per
node were lmax = 3, lmax = 4 and lmax = 5. For belief
propagation algorithm, the settings in [12] and our method
were the same (six iterations). In Fig. 2 we show that our
method produce similar results as [12] in term of reconstruc-
tion quality.

In table 1 we show the computation time for [4] and [12]
and our proposed method on images from Figure 2. Our
method and [4] have been implemented in MATLAB (in the
first one we have interfaced MATLAB code with SIMD in-
structions to speed-up), while [12] is a C++ opensource im-
plementation (http:// lafarren.com/image-completer/). We run
all the programs on a Intel i7-2630QM @ 2.00GHz with 6GB
RAM. The computational results show that our method is
10-15 times faster than C++ implementation of the original
global optimization image inpainting (which is a significant

computational improvement) and in cases is even faster than
the greedy algorithm proposed by [4]. And in terms of quality,
our results are similar to [12] in both cases, with and without
label selection. However, we can see in table 1 that is possible
to get a speed-up around 1.4 if we perfom the label selection.

Additionally, we performed experiments to measure the
performace in the case of block and scratch recovery. Fig.
3 shows the results obtained using the methods in [4], [12],
and ours. For qualitative comparison, the SNR is presented
where our proposed method shows best performance in block
recovery task. On the other hand, in scratchs the performance
is similar than [12], but still better than [4].

Computation Time
Image [4] [12] Proposed WLS Proposed LS

”Giraffe” 7.51s 60.40s 10.33s 6.91s
”Ship” 18.33s 153.63s 13.74s 10.75s

”Elephant” 7.24s 65.86s 6.36s 4.30s

Table 1: Comparison of computation time for different im-
ages via Criminisi’s [4], Komodakis’s [12], our method with-
out label selection (WLS) and our final method (LS).

5. CONCLUSIONS

A novel formulation for Markov Random Field image inpaint-
ing models have been presented. The proposed method uses
a multi-scale approach to solve the inpainting problem, com-
pensating the loss of information in low resolution levels by
using gradient information of the original image. We also pro-
posed to use local statistics (lowest level’s initial label selec-
tion) in order to reduce the number of labels per MRF node.

Our computational simulations show that the reconstruc-
tion quality of our approach is, subjectively, of comparable
quality to results obtained by the original MRF based inpaint-
ing method, as well as to other exemplar-based inpaiting algo-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3: Results for block recovery and scratch: (a) “Peppers”, (b) [4] 26.454 dB, (c) [12] 26.735 dB, (d) ours 29.312 dB, (e)
“Ostrich”, (f) [4] 27.322 dB, (g) [12] 29.289 dB and (h) ours 29.110 dB.

rithms. Moreover, our approach is at least one order of mag-
nitude faster than the original MRF based inpainting method,
while at the same time is competitive with exemplar-based
inpaiting algorithms.
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