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Studentská 2, 461 17 Liberec, Czech Republic.

jiri.malek@tul.cz

ABSTRACT

This paper focuses on blind compensation of memoryless

nonlinear distortions in sparse signals. A nonlinear distortion

tends to decrease the sparsity. We propose to compensate for

the unknown distortion using a general monotonic function,

such that the compensated signal is as sparse as possible.

Novel estimator for the compensation function is pre-

sented, which is able to compensate for both symmetric and

asymmetric distortions. The selection of a sparsity measure

is discussed with respect to compensation performance. The

functionality of the method is evaluated in experiments with

artificially distorted real-world speech signals.

Index Terms— Memoryless nonlinear distortion, blind

compensation, sparse signal.

1. INTRODUCTION

Many analog amplifiers/transducers exhibit some kind of non-

linear behavior, causing the processed signal to be distorted

to some extend. This is encountered, e.g., in the context of

electro-chemical sensors or acquisition of audio signals.

In the digital domain, these distortions are modeled as

nonlinear systems, which either have memory or are mem-

oryless (instantaneous). There exist several distinct mod-

els to represent nonlinear systems with memory, e.g., the

Voltera filters or the nonlinear auto-regressive moving av-

erage (NARMA) model [1]. The simpler memoryless non-

linearities are modeled as functions applied element-wise

to the signal. Many complex distortions can be described

as a sequence of an instantaneous nonlinearity and linear

system(s). An example is the LTI-ZMNL-LTI model [2]

(Linear Time Invariant - Zero Memory NonLinear, i.e. two

linear subsystems separated by instantaneous nonlinearity)

or the Hammerstein model [3] (an instantaneous nonlinearity

followed by an all-pole linear system).

In the case, when some specific input training signals and

the corresponding outputs are available, the retrieval of the

This work was supported by the Technology Agency of the Czech Re-

public (project no. TA01011142).

original signal often proceeds through identification of the

nonlinear system (review of methods is given in [4]) and com-

pensation by its (approximate) inversion [5].

When the input signal is unavailable, the identification

can be performed in a blind fashion, based on some strong

prior knowledge concerning the statistical properties of the

input. Blind identification of complete Voltera representation

is difficult though and thus, the methods often resort to simpli-

fied models. Identification of LTI-ZMNL-LTI model was pro-

posed for circularly symmetric Gaussian input in [2]. Ham-

merstein nonlinearities were identified, assuming long Gaus-

sian processes as inputs, in [3].

Another group of approaches attempts to compensate the

nonlinear system directly, without its prior identification. The

direct compensation of memoryless nonlinearities, based on

known/estimated cumulative distribution function (cdf) of

the original signal, is performed by Histogram Equalization

(HEQ) [6] techniques, which are used in various variants as

preprocessing prior the automatic speech recognition.

However, much weaker assumptions about the unknown

input are sufficient to perform the direct blind compensa-

tion of memoryless nonlinearities. Compensation method for

band limited signals was presented in [7]. It was based on the

fact that passing of signal through nonlinear system causes

spectral spreading, i.e. a spectral content outside the original

band appears in the output signals.

An alternative weak assumption is the sparsity of the orig-

inal signal in some known domain, which is decreased by the

applied distortion. Direct blind compensation based on this

principle was proposed in [8], where a memoryless nonlin-

earities distorting artificial sparse signals were compensated

by polynomial functions.

Current paper extends the idea of blind compensation for

memoryless distortions based on sparsity recovery. Novel es-

timator for the compensation function is presented, which is

able to compensate for both symmetric and asymmetric dis-

tortions. Suitable measure of sparsity is selected with re-

spect to compensation performance. The functionality of the

technique is demonstrated in experiments with artificially dis-

torted real-world speech signals.
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2. PROBLEM FORMULATION

Let the vector s ∈ R
N represent discrete unknown signal con-

sisting of N samples s[n], n = 1..N . Let the signal s be dis-

torted by an unknown function f : R → R, which is applied

element-wise (as are all functions applied to vectors in this

paper), such that

x = f(s), (1)

gives the observed signal x. The task considered in this work

is the blind estimation of the original signal s, based only on

the samples of the distorted signal x.

The estimation is not possible without additional assump-

tions about s and f(·). Our key assumption is that signal s is

sparse in some known domain. Further, we require the func-

tion f(·) to be monotonic, in order to be invertible.

3. PROPOSED METHOD

3.1. Basic outline

The estimation of s is performed via a monotonic compen-

sating function g : R → R, such that the estimate y given

by

y = g(x) = g(f(s)) (2)

is as close to s as possible. The blind estimation admits scaled

versions of s as perfect solutions for the task (scaling ambi-

guity).

Our procedure is based on observation from [8] that a

nonlinear distortion applied to signal s decreases the sparsity.

This is known for speech in the frequency domain, where the

nonlinearity causes formation of new harmonic frequencies

in the spectrum [7]. Therefore, we propose to estimate s via

application of function g(·), such that its output y is as sparse

as possible.

The selection of transform domain where s is considered

sparse does not influence structure of the proposed procedure.

Therefore, we restrict ourselves in this paper to the Discrete

Cosine Transform (DCT) domain, due to its convenient prop-

erties. The DCT tends to concentrate the signal energy in a

few low frequency components [9] for a large class of signals

(such as audio signals or images). Moreover, DCT is a real

transform, which simplifies further optimization.

The implementation of the compensation procedure con-

sists of three steps; 1) the selection of the structure of the

compensation function g(·), 2) the selection of a suitable spar-

sity measure (denoted by S(·)) and 3) the formulation of the

optimization problem and the choice of an algorithm for its

numerical solution.

3.2. Structure of the compensating function

A polynomial is a reasonable candidate for the compensation

function g(·), because an arbitrary analytical function can be

approximated by its power series expansion. Therefore, au-

thors in [8] propose compensation function given as polyno-

mial of the form

y = gp(x) =

M∑
i=1

wix
2i−1. (3)

To ensure the monotonicity, only the odd order monomials

are included in gp(x) and the weights wi are required to be

positive. These constraints restrict the flexibility of gp(·) con-

siderably.

We propose to utilize a more general class of g(·) given as

y = gs(x) =

M∑
i=1

wibi(x), (4)

where bi(·) are some monotonic basis functions and wi ≥ 0.

In order to allow gs(·) compensate broad range of distortions,

we suggest to select bi(·) as inverse functions to known po-

tential nonlinearities, supplemented by odd order monomials

and root functions.

In order to allow compensation of asymmetric distortions,

the structure of the compensation function can be extended to

y = ga(x) =

M∑
i=1

wm,ibm,i(x) +

M∑
i=1

wp,ibp,i(x), (5)

where bm,i(·) and bp,i(·) are bases derived as positive and

negative parts of the domain of bi(·), such that

bm,i(·) =
{
bi(·) if bi(·) < 0

0 else,
(6)

and

bp,i(·) =
{
bi(·) if bi(·) > 0

0 else.
(7)

Function ga(·) is able to compensate independently the pos-

itive/negative intervals within the domain of asymmetric dis-

tortion f(·), allowing accurate estimation of y.

3.3. Selection of sparsity measure

An optimal sparsity measure should strongly reflect the non-

uniformity in distribution of signal energy and should be com-

putationally simple. To this purpose, the �0 norm is often

stated. However, the �0 norm is severely discontinuous func-

tion (which optimization is restricted to combinatorial search)

and is sensitive to noise. To overcome these properties, the

smoothed �0 norm was proposed as a sparsity measure in [8],

given as

S�0(Y) = N −
N∑

k=1

a(Y [k], σa), (8)
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where Y is the DCT of y, Y [k], k = 1..N are its elements

and a(Y [k], σa) is a Gaussian kernel of zero mean and stan-

dard deviation σa. The free parameter σa determines the

smoothness of S�0(·). For large values of σa, the measure

is smoother, but it becomes worse approximation of �0 norm.

The optimal value of σa depends on measured data and is dif-

ficult to estimate.

To avoid the dependence on the free parameter and in or-

der to evaluate the influence of sparsity measure on the com-

pensation performance, we propose two alternative functions

S(·). These functions are not smooth, but their optimization

is much simpler compared to �0 norm (can be performed, e.g.,

through simple subgradient method [10] belonging to convex

optimization). The frequently utilized �1 norm is given as

S�1(Y) =
N∑

k=1

|Y [k]| . (9)

The Hoyer measure (proposed in [11]) is a normalized

ratio of �1 and �2 norms, given by

SH(Y) =

⎛
⎝√

N −
∑N

k=1 |Y [k]|√∑N
k=1 Y [k]2

⎞
⎠(√

N − 1
)−1

. (10)

This measure equals 1 if Y contains only a single non-zero

component and equals 0 if all components are equal up to

signs. Since the Hoyer measure grows with increasing spar-

sity, it should be negated prior the minimization.

3.4. Optimization Problem

The optimization problem of finding the sparsest Y can be

formulated as

minimize
w

S(Y) = S
(∑M

i=1 wiVi

)
subject to ‖Y‖2 = 1

wi ≥ 0, i = 1..M,

(11)

where Vi are the DCT transforms of signals vi = bi(x) and

w is the vector composed of weights wi, i = 1..M . The

equality constraint prevents trivial solution and the inequal-

ity constraint ensures the monotonicity of gs(·).
For the case of asymmetrical compensation function, the

optimization problem needs to be modified as

minimize
w

S(Y) = S
(∑M

i=1 wm,iVm,i +
∑M

i=1 wp,iVp,i

)
subject to

∥∥∥∑M
i=1 wm,iVm,i

∥∥∥
2
= 1∥∥∥∑M

i=1 wp,iVp,i

∥∥∥
2
= 1

wm,i ≥ 0, wp,i ≥ 0, i = 1..M,
(12)

where Vm,i and Vp,i are DCT transforms of signals vm,i =
bm,i(x) and vp,i = bp,i(x), respectively. The �2 norm of each

set of basis functions needs to be constrained separately in

Table 1. Distortions considered in the experiments
Abbreviation f(z)

Pow f(z) = z5

Tanh f(z) = tanh(5z)

αTanh f(z) = α tanh(5z)

Pw3Pw7 f(z) =

{
z3 if z < 0

z7 else

order to prevent trivial solutions on positive/negative interval

of the ga(·) domain of definition.

Signals Vi differ much in energy, which complicates the

minimization. It is convenient to normalize the energy of Vi

prior the optimization.

The minimization in (11) is a nonlinear programing

task. The experiments presented in the following section

were solved by an active-set algorithm provided by function

fmincon in Matlab R©. Although the fmincon solver is in-

tended primarily for smooth objective functions, it is known

to be effective on some non-smooth problems as well [12].

As an implementation-simple alternative to complex

active-set algorithm, the constrained subgradient method [10]

can be utilized. This method is intended for solving convex

minimization problems and is proved to converge even for

non-differentiable objective functions. The main advantage

of the subgradient method resides in its implementation sim-

plicity, but the convergence rate is slower compared to the

active-set algorithm.

4. EXPERIMENTAL EVALUATION

In the following section, we present several experiments with

artificially distorted real-world speech signal to demonstrate

the functionality of the proposed method. Speech is known to

be sparse in the DCT domain. We utilize a lecture recorded

for streaming purposes at our university. The recording is

sampled at 16kHz, lectured in Czech by female speaker and

is approximately 90 minutes long. The signal is captured by

a close-talk microphone. The common background noise of a

lecture hall is present in the recording.

Within all following experiments, the speech signal is nor-

malized to range [-1,1] and a synthetic distortion f(·) from in

Table 1 is applied to it.

Signal frame of length 0.1 s is sufficient for the estima-

tion of g(·). The distorted recording is divided into such

frames and the compensation is performed and evaluated in

each frame separately, in order to show the average properties

of the method. Frames with low energy are discarded, in order

to avoid estimation in segments without speech. We use 1500

frames in the experiments. The parameter α for the αTanh

distortion is selected in each frame independently, such that x
in that frame has unitary �1 norm.

We utilize two different sets of basis functions. The first,
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denoted by B1, consists of odd order monomials (b(z) =
zc, c ∈ {1, 3, 5, 7}), odd order root functions (b(z) = c

√
z, c ∈

{3, 5, 7}) and the inverse hyperbolic tangent (denoted as

aTanh), included as inverse for soft clipping nonlinearity

Tanh. The other set, denoted as B2, consists of the same

monomials and root functions, but misses the aTanh basis.

The proposed compensation structures/sparsity measures

are compared to proposal from [8], i.e. purely polynomial

structure gp(·) with smoothed �0 norm (σa = 0.01, M =
4). Moreover, the proposed procedure is compared to a well-

known technique for compensation of memoryless nonlinear

distortions - Histogram equalization (HEQ) [6]. The tech-

nique is not blind, since it assumes the knowledge of the cdf

of the original signal. In our case, this cdf was estimated us-

ing another lecture (of length 90 minutes) given by the same

female speaker in the same room as the lecture to-be compen-

sated. The cdf of the distorted signal was estimated using the

whole distorted recording as well.

As a measure of compensation performance we utilize the

Signal to Distortion Ratio [dB], given by

SDR = 10 log

(
sT s

minβ [(s− βy)T (s− βy)]

)
, (13)

where β is a parameter compensating the scaling ambiguity.

The results are stated in the means of SDR improvement, i.e.

the difference of SDRs between the compensated signal and

the distorted signal.

4.1. Sparsity measures and compensation structures

In this experiment, we compare the performance of the con-

sidered sparsity measures and structures of the compensation

function. The results are summarized in Tables 2 and 3.

The best results are often achieved using the S�0(·) mea-

sure, with varying value of σa, however. The optimal value

of σa depends on the applied compensation structure g(·) and

the encountered distortion. Values σa ∈ [0.01, 5 · 10−4] seem

to be adequate for speech signal compensation, outside this

interval the performance drops rapidly. The results of the

non-smooth S�1(·) measure are comparable to S�0(·), with-

out dependence on the free parameter.

The compensation of Tanh distortion is affected by scal-

ing of x. It stems from the fact that, unlike to monomial/root

distortions, atanh(z/α) is not a scaled version of atanh(z),
i.e. the basis ensuring perfect compensation for αTanh is not

available in the B1 set. Nevertheless, the presence of aTanh

in B1 improves the compensation performance of αTanh dis-

tortion compared to compensation via B2 or gp(·) from [8],

where aTanh is missing. This demonstrates the advantage of

the inclusion of the inverses to known potential nonlinearities

in gs(·). Moreover, gp(·) is completely unable to compensate

the polynomial nonlinearities (such as Pow and Pw3Pw7).

As expected, the ability of symmetric compensation func-

tion gs(·) (regardless to available bases) to compensate asym-

Table 2. Achieved SDR improvement averaged over 1500

frames, using the compensation structure gs(·). Unless other-

wise stated, basis function set B1 is used.
Measure Pow Tanh αTanh αTanh Pw3Pw7

(B2)

S�0(1 · 10−2) 44.43 49.05 16.45 9.51 8.98

S�0(5 · 10−3) 42.68 47.69 17.61 9.55 8.64

S�0(1 · 10−3) 44.01 41.01 17.09 8.64 6.92

S�0(5 · 10−4) 47.20 43.74 15.78 8.08 5.99

Hoyer 39.89 40.02 16.57 8.91 8.86

S�1 49.89 42.72 16.66 9.05 8.87

HEQ 14.86 9.25 9.25 9.25 13.48

Proposal in [8] - 9.50 9.50 9.50 -

metric distortion Pw3Pw7 is limited.

The compensation of symmetric distortions via ga(·)
achieves lower SDR values compared to compensation via

gs(·). The difference is most evident in cases, when the basis

for perfect compensation is available in the basis set. On

the other hand, the utilization of function ga(·) leads to sig-

nificant performance improvement compared to gs(·), when

compensating asymmetric nonlinearity.

The proposed procedure outperforms HEQ in scenarios,

when the compensation structure g(·) respects the distortion,

i.e. asymmetric nonlinearity is compensated by ga(·). HEQ

achieves comparable or better results in situations, when the

set of basis functions does not contain a basis allowing per-

fect compensation (distortion αTanh compensated via basis

set B2).

Regarding computational load, HEQ is less demand-

ing compared to the proposed approach. For the unopti-

mized Matlab R© implementations (executed on computer

with 3.4GHz quad-core processor), the compensation of 1500

frames via HEQ required 22s. This includes the estimation

of the cdfs, i.e. the most demanding phase of HEQ. The time

required by the proposed procedure depends on the number

of basis functions M , compensation structure g(·) and the ini-

tialization of w. Considering initialization wi = 1, i = 1..M ,

for gs(·) the computation took about 31s when M = 4 and

about 66s for M = 8. For ga(·) the computation took about

42s when M = 4 and about 210s for M = 8.

4.2. Preprocessing prior to the automatic transcription of
speech

The proposed method can be utilized e.g. as a part of pre-

processing for nonlinearly distorted speech prior automatic

speech recognition (ASR). Although the memoryless model

by itself may not be general enough for all complex nonlin-

earities encountered in audio, the presented approach could

be used for the compensation of the instantaneous nonlinear

subsystem in the LTI-ZMNL-LTI or Hammerstein model.

In this experiment, we improve the recognition accuracy
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Table 3. Achieved SDR improvement averaged over 1500

frames, using the compensation structure ga(·). Unless other-

wise stated, basis function set B1 is used.
Measure Pow Tanh αTanh αTanh Pw3Pw7

(B2)

S�0(1 · 10−2) 24.59 15.96 14.20 8.46 26.44

S�0(5 · 10−3) 25.86 16.86 14.75 8.22 27.49

S�0(1 · 10−3) 27.16 17.81 13.84 7.17 28.73

S�0(5 · 10−4) 24.16 18.26 12.96 6.53 24.91

Hoyer 24.36 15.65 13.86 7.91 27.13

S�1 26.64 16.68 13.97 7.95 28.58

HEQ 14.86 9.25 9.25 9.25 13.48

Proposal in [8] - 9.50 9.50 9.50 -

for artificially distorted speech submitted to the large vocabu-

lary continuous speech recognition (LVCSR) system.

The utilized recognition system for Czech language [13]

uses an acoustic model based on tied-state context dependent

Hidden Markov Models of Czech phonemes and several non-

speech events. The lexicon contains 504000 items.

We distort the considered lecture by function f(z) =
tanh(bz) simulating soft clipping encountered during record-

ing and submit the signal to the transcription engine. Pa-

rameter b influences the degree of distortion. Subsequently,

we compensate the signal with the presented approach and

let it be transcribed again. The compensation is performed

via function gs(·), either with the basis set B1 or B2. The

weights w are given as an average weight vector estimated

over 200 frames of x with the highest energy. The cdf of the

distorted signal, required by HEQ, was estimated using the

whole distorted recording.

The results, stated by means of recognition accuracy

(ACC), are shown in Figure 1. The best performance was

achieved using the basis set B1, when the recognition perfor-

mance for compensated data approaches the original value

74.88%. The results achieved by both B1 and HEQ are in-

dependent from the distortion degree. For the basis set B2,

the achieved accuracy is lower compared to B1 and compa-

rable or lower to HEQ. However, even when the basis aTanh

allowing perfect compensation is unavailable, the presented

approach is able to compensate the distortion significantly.

The compensation performance of basis set B2 deteriorates

with higher degrees of distortion, because the monomial/root

bases alone cannot entirely invert the highly nonlinear distor-

tion.

5. CONCLUSIONS

We proposed an approach for blind compensation of sparse

signals affected by a memoryless nonlinear distortion. The

functionality of the technique is shown in experiments with

real-world speech signals distorted by artificial nonlinearities.

Achieved compensation is demonstrated through significant

Tanh5 Tanh7 Tanh10
50

55

60

65

70

75

Ac
c[%

]

Distorted
Compensated B1
Compensated B2
Compensated HEQ

Fig. 1. Automatic recognition accuracy for experiment de-

scribed in Section 4.2. The bold black line indicates recogni-

tion accuracy for undistorted lecture (74.88%).

improvement of the Signal to Distortion Ratio and of the au-

tomatic transcription accuracy.

Further work needs to address a generalization towards

compensation of distortions with memory, which are encoun-

tered often e.g. in audio applications. Here, the present

method can be used to compensate the zero-memory non-

linear subsystem within the LTI-ZMNL-LTI model or the

Hammerstein model.
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