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ABSTRACT

Many signals cannot be resolved in time and frequency with 
a single time-scale of analysis and multi-band 
representations are needed that can adapt to the local signal 
content. Using a newly developed contour-based 
representation of signals, we show that efficient multi-band 
representations arise when long-range, structurally stable 
shapes are enhanced relative to background. For the 
examples provided here, resolution in time and frequency is 
distributed adaptively so that each component of a signal is 
represented in its most parsimonious form. The resulting 
representation is characterized by simple shapes in the time-
frequency plane. 

Index Terms— Time-frequency analysis, adaptive 
filtering, reassignment and sparse representation

1. INTRODUCTION

 Sparse time-frequency methods typically search for a linear 
decomposition of signals through a minimal number of 
dictionary elements [1]. The dictionary elements are drawn 
from an over-complete set,  which may be defined a-priori or  
adapted to a specific stimulus class [2]. Numerous iterative 
assembly processes are effective,  but robust methods for 
single-pass adaptive time-frequency representations remain 
elusive, though numerous promising directions have been 
proposed [3]-[6]. The starting point of these and other time-
frequency representations is the parcelation of the time-
frequency plane into isolated “atoms” of energy with no 
intrinsic associations among them. From this basis, the 
structure of long-range shapes in time and frequency cannot 
easily guide adaptive algorithms, although many signals are 
naturally represented by coherent long-range forms, such as 
contours. Recently,  a general time-frequency method was 
described whose elementary units are contours of varying 
shapes. These shapes fully represent any signal, but the 
details of the shapes depend on the signal content and on the 
time-scales of analysis. Each contour in the representation is 
a coherent object - a component of the signal whose 
boundaries are defined by a region of the Gabor transform 
that contains no analytic zeros [7]. The contours can be 
interpreted as the minimal coherent units of the signal from 

the perspective of the analytic Gabor transform. Their scales 
are typically much larger than the resolution limit of the 
analysis. Using this contour representation, a prior study 
demonstrated how measures of contour complexity could be 
used to optimize the time-scale of analysis, on average, for 
an entire signal [7]. The implicit assumption in that work 
was that parsimonious representations would involve 
contours of low curvature. The present work is motivated by 
the desire to define a more general principle for adaptive 
time-frequency analysis based on time-frequency contours. 
The principle is as follows: when a signal component is 
analyzed in its own natural time-scale, then the contours that 
represent the component are structurally stable - the details 
of the shapes do not change with small variations in the 
parameters of analysis. This hypothesis does not presume 
that contours should be simple in form, but only that they be 
structurally stable. A process that enhances structurally 
stable shapes provides a sparse multi-scale representation of 
complex signals. In the following, we outline the theory, and 
provide a few examples.

2. BACKGROUND

 The contour description of sound [7] is based on a 
generalization of the reassignment process [8]. This involves 
the Gabor transform, χ( ) and the associated transform η( )
based on a window shape that is the derivative of a 
gaussian:

χ t,ω( ) = e− t−τ( )2 2σ t
2

eiω t−τ( )x τ( )dτ∫ = χ t,ω( ) eiφ t ,ω( )                       (1) 

η t,ω( ) = 1
σ 2

t

τ − t( )e− t−τ( )2 2σ t
2

eiω t−τ( )x τ( )dτ∫                     (2)

 These transforms are applied to the acoustic signal of 
interest, x(t) , which is a function of time t( ) , to produce a 
representation that is a function of both time and frequency 
ω( ) . In this expression, σ t defines the time-scale of the 

analysis window, therefore the resolution of the analysis.  
Contours edges are equivalent to the fixed points of the 
time-frequency reassignment process, subject to the 
constraint that reassignment moves along a fixed angle. By 
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another definition, these points are stationary phase points 
for the resynthesis integral that produces the original signal 
from the Gabor transform [7].
 Contour edges are defined by:

ℑ (η χ )eiθ( ) = 0                                                                  (3)   

 
 where θ defines a contour preference angle in the time-
frequency plane and ℑ f( ) is the imaginary component of 
f .  Intuitively, (η χ )eiθ is an approximation to the 

derivative of the Gabor transform along a specific angle θ( )  
in the time-frequency plane - closely related to heuristic 
expressions for “spectral derivatives” based on multi-taper 
spectral analysis[9],[10]. The points that satisfy (3) form 
extended closed loops in the time-frequency plane that 
follow the ridges, valleys and saddle points of χ . To divide 
the contours into coherent units, contours are segmented 
whenever they cross zeros of the Gabor transform [7]. It is 
possible to analytically define a waveform for each contour 
such that the sum of all waveforms equals the original signal 
[7]. In all images shown here, the color scale for each 
contour is equal to the local value of χ . 

3. PARSING COMPLEX SOUNDS USING MULTIPLE 
TIME-SCALES

 For every time-scale and angle of analysis,  a distinct object-
based decomposition exists. Every choice of time-scale σ t  
and angle θ generates its own contour representation and 
associated territories - an over-complete family of valid 
contour representations, each of which fully captures the 
signal content (Fig. 1 in [7]). The complexity and structural 
stability of the contour shapes depend on how well the angle 
and time-scale parameters are matched to the signal content. 
Fig. 1 illustrates contour shapes derived for a simple signal, 
analyzed with multiple choices of time-scale and angle.  The 
signal consists of two closely spaced, parallel frequency 
sweeps. In this figure, rows represent analysis in different 
time-scales and columns analysis in different angles. 

Although contour sets from each time-scale and angle 
produce a complete representation of the signal, a time-scale 
of 2 ms, for this signal, yields the simplest contours and the 
most coherent long-range form. The underlying principle is 
simple: at the optimal time-scale, each component is spaced 
by more than the resolution of the time-frequency 
uncertainty: in time and in frequency. Therefore,  at this 
time-scale, the signal components are separable in the time-
frequency plane.  

 How can one automatically select from the over-complete 
contour sets a representation of complex signals where each 
subcomponent of a signal is represented in its own natural 
time-scale and angle? An earlier publication suggested 
selecting contours with the simplest shapes [7]. Here we 
suggest a more general criterion - select structurally stable 
contours,  regardless of their shapes. When a signal 
component is analyzed in its own natural time-scale and 
angle, then the long-range contours that represent the signal 
are structurally stable - the details of the shapes do not 
change with small variations in the parameters of analysis. 
Returning to Fig. 1, for example, one can observe that at the 
optimal time-scale, contour shapes for the chosen signal do 
not depend sensitively on parameter θ . For this simple 
signal, the contours in the middle row of Fig. 1 are the 
structurally stable contours.  Fig. 2 and 3 illustrate how the 
structural stability of contours can highlight a tonal signal 
embedded in noise. The analysis reveals a quiver of 
similarly shaped contours that track the tonal component of 
the sound for an angle near θ ≈ 0 . To quantify the structural 
stability of a contour, we (1) calculate a set of contours for a 
range of parameters, σ t and θ . (2) Create a sparse time-
f requency matr ix , Mi represent ing “ th ickened” 
representations of each contour.  The matrix for a contour is 
zero everywhere unless the pixel falls within a 
neighborhood of the contour defined by the resolution of the 
underlying Gabor transform used to generate the contour 
Δt =σ t ,Δf = 1 σ t( ) . (3) Define a consensus score for each 

contour 
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Fig. 1. The structural stability of contour shapes can guide an adaptive 
time-frequency analysis. In this example, the signal components (two 
frequency sweeps) are “separable” when 2ms filters are used in the Gabor 
transform. Contours are calculated for three time scales (rows) and three 
angles (columns.) At the optimum time-scale (middle row), contour shapes 
are robust to variations in the angle of analysis. Contour energy is drawn 
from and illustrated in hot color scale.  
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Fig. 2. Quantifying the structural stability of contours. (a) Contours 
calculated for a fragment of white noise with a superimposed 7kHz tone. 
Contours in red are calculated for a range of angles, at a single time scale. 
Blue dots are maxima of the signal. Green dots are minima. The contours 
that track the 7kHz tone are tightly bundled together - indicating local 
structural stability of contour shape across variations in the analysis 
parameters.  In (b), two contours are extracted from the region marked by 
the white square in (a). The territories belonging to the two contours are 
shaded in gray-scale, and their overlap in white.  
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Si = maxj Mi ⋅M j{ }                                                           (4)

 This maximization involves many sparse matrix 
multiplications (the computation is quadratic in the number 
of contours). In words- each contour is assigned a score 
defined by its maximal overlap with any other contour.  In 
Fig. 2b, the light gray pixels represent the matrix for the red 
contour, the darker pixels the matrix for the blue contour, 
and their overlap Mi ⋅M j is the area of the white pixels. We 
call this the “consensus score” of the contour. This 
consensus score is not normalized by contour length, so the 
scoring system favors contours that are both long and highly 
overlapping with some neighboring contour.

 In Fig. 3, the contours of Fig. 2a are recolored according to 
their “consensus scores,” a process that highlights the signal 
region containing the sinusoid. Specifically, if the 
coordinates of i th contour are represented by a matrix, Ci  
in a discrete approximation to χ ,  then Fig 3 is a consensus 
image defined by 
 
CI = SiCi∑                                                                    (5)

 
 Fig. 3 was calculated using a set of contours defined in a 
single time-scale and many angles; the more general 
approach used in the subsequent figures combines contours 
across variations in both time-scale and angle. A simple 
example illustrating this multi-band approach can be found 
in Fig. 4, which demonstrates the analysis of a click and a 
tone embedded in noise.  The “consensus images” in this 
figure are produced by the pointwise histogram of all 
contours, weighted by their individual consensus scores. For 
this signal, the consensus image (Fig. 4a) accurately tracks 
both the click and the tone since each component is 
represented using information in its own natural time-scale. 
It must be emphasized that no a-priori information was 
applied to this figure. The consensus contour analysis also 
works for complex signals. Roughly speaking, as long as 
signal components are locally spaced by distances in time 
and frequency greater than the spread of the time-frequency 
uncertainty (for some time-scale), the method will highlight 
these components by emphasizing contours drawn from the 
appropriate time-scales. 
 Fig. 5 demonstrates how the consensus operation can 
reduce the representation of contours of low structural 

stability in a complex signal, revealing a parsimonious 
signal representation.  Fig.  5a shows the standard 
spectrogram of a bird song. Fig. 5b shows the collection of 
all contours Ci∑( ) of the same bird song, where contours 
are calculated over a narrow range of relevant time-scales. 
Even though the time-scales are already matched to zebra 
finch song,  the summed image is visually dense with signal 
components multiply represented in different angles and 
time-scales. Fig. 5c shows the CI (Eq. 5) for that same 
song, which highlights the structurally stable features of the 
data. Fig. 5d further weights this image by the local 
spectrogram power, SiCi ⋅ χ i∑ where χ i is the Gabor 
transform used to calculate i th contour. Fig. 6 applies the 
same consensus enhancement to the analysis of a human 
speech sample. In this analysis, consensus contours at low 
angles track some of the the formants, while consensus 
contours at steep angles track the glottal pulses.

4. COMPUTATIONAL METHODS AND 
RESYNTHESIS

 The analysis described here uses the Discrete Gabor 
transform (2048 frequency bins, Signal sampling rate 25 
kHz or 48kHz) with a window overlap of 2038 samples. All 
matrixes used in contour calculations have the same 
resolution. For resynthesis, we do not synthesize exact 
waveforms for each contour as described previously [7], but 
use an overlapped inverse FFT  for each column of the time-
frequency consensus image. The purpose of the consensus 
representation is not to exactly represent the original signal 
but to capture the salient features of a signal as 
parsimoniously as possible -  a sparse approximation to the 
original signal.  The accuracy of the resynthesis can scale 
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Fig. 3. Consensus scores enhance contours that follow signal rather than 
noise. The bundle of contours that track the embedded 7kHz sinusoid stand 
out from the noise in this analysis.  
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Fig. 4. Consensus highlights signal in noise. The analyzed signal is a 
fragment of white noise with an embedded sinusoid at 7kHz, and a click at 
t=50ms. (a) Contours weighted by consensus highlight the signal 
components with high temporal precision for the click and high frequency 
precision for the sinusoid. (b) Local amplitudes of the Gabor transform. In 
panels (c) and (d) individual contours are shown for 2ms and .5ms time-
scale respectively. (Red, θ = π / 2 : Black, θ = 0 ). The black contour in 
panel (c) tracks the sinusoid, while the red contour in panel (d) tracks the 
click. The two contours that track the signal components are structurally 
stable and stand out relative to noise in the consensus-weighted image in 
panel (a).  
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smoothly from a high quality perceptual match to compact, 
lower quality representations of sound,  depending on the 
cutoff in contour consensus scores. The consensus image 
from Fig. 6b incorporating contours from all angles provides 
a fairly complete perceptual resynthesis of the speech 
sample. Resynthesis based on Fig. 6c remains intelligible, 
since many of the signal formants are captured by this 
population of contours. 

5. CONSENSUS PROVIDES AN OBJECT-BASED 
SIGNAL ENHANCEMENT 

 In the consensus process, contours are never subdivided. If 
a contour contributes to the final representation, it does so in 
its entirety, even if some time-frequency points along the 
contour are not “in consensus” with some other contour. Fig. 
7 reveals how the notion of contour consensus differs from a 
simple measure of contour density. For a double chirp 
signal, contours are calculated in time-scales in the range of 
2-10ms.

 In Fig. 7a and 7b the time-frequency points of highest 
pixelwise overlap fall between the two sweeps. Fig. 7c 
contains the result of the contour-based consensus (Eq. 5) . 
The take home message from this figures is that pointwise 
measures of contour density can fail to extract parsimonious 
representations.  Any process of thresholding the images in 
Fig. 7a or 7b will fail to discover the parsimonious 
representation in Fig. 7c.  To achieve the gains of the 
contour-based analysis, the method must amplify stable 
contours rather than just stable pixels. This contour or 
“object-based” time-frequency principle was absent from a 
prior definition of cross-bandwidth consensus [11].  The 
overlap of reassigned pixels in a multi-band analysis 
produces a figure similar to Fig.  7b. Reassignment alone 
does not provide the gains of an “object-based” time-
frequency analysis, since reassignment does not link 
together associated points in the time-frequency plane. 

6. LIMITATIONS

 The consensus images (CI  in Fig. 5c) combine 
qualitatively different forms of information,  and for some 
applications, these should be kept separate. Specifically,  the 
consensus score, Si for a single contour includes 
information about both the structural stability of form and 
length of the contour. Furthermore, the consensus image 
(CI  in Fig. 5c)  is influenced by  contour density at each 
point in time and frequency. The images that appear to be 
most useful add yet one more feature - the local weighting 
of consensus contours by the spectrogram power (Fig. 5d) 
For any quantitative analysis, a statistical understanding of 
the relative contributions of these features will be needed.

 The consensus score depends on the granularity of the 
parameter space in time-scale σ t( ) and angle θ( ) that is 
explored. The score also depends on the number of 
frequency channels, and the temporal overlap or step-size in 
the discrete approximation to the analytic Gabor transform 
(spectrogram). A principled approach to this analysis could 
compute contour score distributions in noise, and then select 
signal contours based on their likelihood in this background 
distribution. However, this noise distribution must be re-
computed for the exact parameter settings used in each 
analysis.
 
 Not only does the granularity of the parameter search affect 
the results, but a scoring process based on consensus scores 
requires awkward decisions such as how to rank a vertical 
contour that tracks a click relative to a horizontal contour 
that tracks a tone (The choice of discretization for the Gabor 
transform influences this relative weighting since it impacts 
contour length which is folded into the consensus scores). 
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“The system may break down soon”

Fig. 6. Spectrogram and contour representation of human speech. (a) 
Spectrogram of a human speech sentence, “The system may break down 
soon.” Gabor transform calculated with σ t = 3 ms. (b) Top scoring 
consensus contours calculated for time-scales 1-4.5ms. (c) Highlighting the 
shallow- angle consensus contours drawn from 2-4.5ms time-scale. Many 
of these low-angle contours follow the formants, or vocal tract resonances 
essential to the perception of speech.
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Fig. 5. Consensus process can reveal parsimonious representation of signal. 
Input signal is a short syllable of zebra finch song. (a) Standard 
spectrogram of signal analyzed for time-scales 0.3 ~ 2.2 ms, (b) Collection 
of all contours (c) Consensus image of the signal weighted by consensus 
score (d) Consensus image of signal weighted by consensus score and local 
power from spectrogram.  
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The consensus representation is lossy (unless all contours 
are taken), and what is lost depends on the details of a 
complex scoring process. 

 Calculating contour sets requires little time beyond the 
calculation of the discrete spectrogram, but the present 
method repeats this calculation over a two dimensional 
parameter space and then adds to this a scoring processing 
involving sparse matrix multiplication that is quadratic in 
the number of contours.  A significant advance would 
embody the principle of the contour stability analysis in a 
simpler process that was less computationally intensive.

7. DISCUSSION

 The basis of the contour representation is the observation 
that any signal can be represented as a collection of contours 
in the time-frequency plane with associated simple 
waveforms. For spectrally dense signals such as white noise, 
local contour shapes change quickly with small changes in 
the time-scale or angle of analysis.  However, signal 
components that are separable from the background can 
produce contour shapes that are stable to changes in the 
parameters of analysis. By emphasizing long,  structurally 
stable contours, parsimonious signal representations can be 
found where separate components are represented in their 
own natural time-scales and angles of analysis.

 The result is not just an adaptive time-frequency analysis, 
but provides an elementary form of stream segregation since 
contours that survive the winnowing process can be re-
assembled element by element to capture chosen features of 
the original signal. The vertical and horizontal components 
of the signal in Fig. 4 can be separately resynthesized by 
taking only consensus contours from vertical or horizontal 
angles.  Similarly, many of the formants of the speech 
sample are separated from glottal pulses by taking only the 
low-angle consensus contours (Fig. 6c).

 The method described here is rooted in the analytic 
structure of the Gabor transform, but the principles will 
generalize to other transforms such as the chirplet transform 
[12]. Structurally stable forms are found when each 
component of a signal is represented in its own natural time-
scale and angle. This principle can guide an adaptive time-
frequency analysis, though quantitative benchmarks remain 
to be examined.
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Fig. 7.  Pixel-based consensus measures fail to extract a parsimonious 
representation. (a) Overlap of unweighted contours calculated in timescales 
2-10ms. Pixels of highest overlap fall between the two sweeps. (b) Overlap 
of the same contours, weighted by the local power of the Gabor Transform. 
(c) Top scoring contours calculated by the consensus measure define here.   
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