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ABSTRACT
We investigated methods for achieving sharp directivity over
a broad frequency range by using a multichannel inverse fil-
ter. We previously proposed the diffused sensing method for
segregating sound sources by decorrelating the transfer func-
tions of each sound source by placing an array in a diffused
acoustic field. Because many transfer functions must be mea-
sured in advance in our previous method, we discuss how to
achieve sharp directivity based on diffused sensing using only
a few pre-measurements. As a physical phenomenon, transfer
functions are expected to be decorrelated automatically in a
diffused acoustic field. By exploiting this property, we found
that sharp directivity could be achieved with the multichan-
nel inverse filter, which dereverberates the target paths only.
Through simulations, we show that to achieve sharp directiv-
ity, the length of the multichannel inverse filter should be the
same as the impulse response length.

Index Terms— Microphone array, beamforming, transfer
function, diffuse acoustic field, multichannel inverse filter

1. INTRODUCTION

Beamforming techniques using microphone arrays have been
studied to clearly emphasize target sources [1]. Most conven-
tional studies on beamforming have focused on the reception
of target sources within a range of a few meters from the ar-
ray. However, there are situations in which we would like to
zoom in on a target source placed in a remote position just as
a camera zooms in on objects. These situations might include,
e.g., zooming in on the voices of athletes on a playing field,
actors in a theater, and speakers in a teleconference. The goal
of this research was to achieve sharp directive beamforming.

How to design beamforming filters (S1) and how to struc-
ture the arrays to reduce the power of interference sources
in the beamforming output (output interference power) (S2)
have been investigated [1]. There are various well known
filter design methods for (S1), for example, delay-and-sum
(DS), minimum variance distortionless response (MVDR),
and maximum likelihood (ML) [1]. Blind source separation

(BSS) is another method for estimating the filters without
prior information, such as source positions, and frequency
domain independent component analysis (FD-ICA) [2] is an
effective algorithm for BSS. For the latter subject (S2), var-
ious sensor arrangements have been studied, for example,
linear, spherical, and random arrangements [1]. Recently, the
use of a rigid spherical microphone array to generate spheri-
cal harmonic directivity patterns has been extensively studied
[3]. By rearranging the array structure in such ways, the trans-
fer function, which is the frequency response of the impulse
response from a source to a microphone, can be physically
varied. However, it is difficult to achieve sharp directivity
over a broad frequency range since the cross-correlation be-
tween transfer functions increases when sound sources are
closely positioned.

We recently proposed the diffused sensing method [4],
which makes it possible to form sharp directivity over a broad
frequency range by placing arrays in a diffused acoustic field.
It can be implemented in practice by, e.g., positioning an ar-
ray inside a reflective enclosure. Because the transfer func-
tions of each sound source position are mutually uncorrelated
in a diffused acoustic field [5], this would enable us to segre-
gate even closely positioned sound sources. There have been
studies that were focused on the characteristics of a diffuse
acoustic field [6], but not on generating such a field for decor-
relating the transfer functions. In our previous work [4], we
designed a beamforming filter by minimizing the output in-
terference power while constraining the response gain to the
target source. However, this filter design method requires the
transfer functions of every position of interference as well as
that of the target sound source. Since it is difficult to model
the transfer functions in a diffused acoustic field, we mea-
sured many transfer functions in advance.

The essence of diffused sensing is to decorrelate the trans-
fer functions by varying the array structure. Provided that the
transfer functions are automatically decorrelated in a diffused
acoustic field, the output interference power can still be mini-
mized even if the filters were designed only to emphasize the
target source. To confirm this idea, we discuss the perfor-
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mance of a representative filter for retrieving a target source,
i.e., the multichannel inverse filter, in terms of reducing the
output interference power. The minimum length of the filter,
which dereverberates the target path, is determined using the
multiple input/output inverse theory (MINT) [7]. We evaluate
the effective filter design method for sharp directivity bem-
forming based on the diffused sensing method by investigat-
ing the relationships between the filter length and the output
interference power.

This paper is organized as follows. The principle of dif-
fused sensing is explained in Sec. 2. In Sec. 3, the relation-
ships between the output interference power and a multichan-
nel inverse filter based on diffused sensing are investigated.
Numerical simulations are described in Sec. 4, and the paper
is concluded in Sec. 5.

2. PRINCIPLE OF DIFFUSED SENSING

2.1. Modeling of observed signals

Let us assume that M microphones receive a target and K
interference sources. Sharp directivity is achieved by empha-
sizing an arbitrary target source by suppressing many interfer-
ence sources (K is assumed to be a large number). The im-
pulse responses from the m-th microphone to the target and
to the k-th interference source are respectively described by
am(l) and bk,m(l) whose lengths are L. When the source
signal of the target and the k-th interference at time t are re-
spectively denoted as s(t) and nk(t), the observed signal at
the m-th microphone xm(t) is expressed as

xm(t)=
L−1∑
l=0

am(l)s(t− l)+
K∑

k=1

L−1∑
l=0

bk,m(l)nk(t− l). (1)

By applying a short-time Fourier transform to xm(t), the
convolved mixture in Eq. (1) is approximated as an instanta-
neous mixture at each frequency:

xm(ω, t) = am(ω)s(ω, t) +

K∑
k=1

bk,m(ω)nk(ω, t), (2)

where ω represents frequency, xm(ω, t), s(ω, t), and nk(ω, t)
denote the time-frequency representation of xm(t), s(t), and
nk(t) respectively, and am(ω) and bk,m(ω), which we call the
transfer functions, are the frequency responses from the tar-
get and the k-th interference source to the m-th microphone,
respectively. Let us rewrite Eq. (2) in matrix notation:

x(ω, t) = a(ω)s(ω, t) +
K∑

k=1

bk(ω)nk(ω, t), (3)

where

x(ω, t) = [x1(ω, t), . . . , xM (ω, t)]T,

a(ω) = [a1(ω), . . . , aM (ω)]T,

bk(ω) = [bk,1(ω), . . . , bk,M (ω)]T,

and T denotes the transpose.

2.2. Beamforming to minimize output interference power

The output signal of beamforming y(t) is calculated by con-
volving xm(t) with the beamforming filter wm(t), which is
designed to emphasize the target source,

y(t) =

M∑
m=1

J−1∑
j=0

wm(j)xm(t− j), (4)

where J is the filter length. When the time-frequency repre-
sentation of y(t) is described as y(ω, t), it is approximately
calculated by

y(ω, t) =
M∑

m=1

wH(ω)x(ω, t), (5)

where H denotes a Hermitian conjugate, and the complex con-
jugate of wm(ω) corresponds to the frequency response of
wm(j),

w(ω) = [w1(ω), . . . , wM (ω)]T.

The output interference power pN(ω) is defined as the
power of yN(ω, t), which is the interference component in-
cluded in y(ω, t) [1],

pN(ω) = E
[|yN(ω, t)|2

]
, (6)

where E[·] is the expectation operator, which can be replaced
by the time-averaging operator with the assumption of ergod-
icity. When assuming that the source signals are uncorrelated
to each other, pN(ω) is calculated using transfer functions and
filters as

pN(ω) =

K∑
k=1

|wH(ω)bk(ω)|2. (7)

Various filter design methods have been studied to min-
imize pN(ω) [1]. When using the ML method, the filter is
designed to minimize pN(ω) while emphasizing the target:

wML(ω) =
R−1(ω)h(ω)

hH(ω)R−1(ω)h(ω)
, (8)

where h(ω) = [h1(ω), . . . , hM (ω)]T is the array manifold
vector that models the direct propagations between the target
source and microphones, and R(ω) denotes the spatial cor-
relation matrix of interferences. Since R(ω) is composed of
cross-correlations between microphones, it is calculated us-
ing transfer functions of interferences when assuming that the
source signals are uncorrelated:

R(ω) =
K∑

k=1

bk(ω)b
H
k (ω). (9)

However, it is difficult to minimize pN(ω) if the transfer func-
tions are highly correlated.
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2.3. Diffused sensing to decorrelate transfer functions

We recently introduced techniques for optimizing the trans-
fer functions in order to achieve sharp directivity in our dif-
fused sensing method [4]. If the transfer functions are decor-
related over a broad frequency range, which satisfies Eq. (10),
sound sources can be segregated even if they were positioned
closely.

a(ω) ⊥ b1(ω) ⊥, . . . ,⊥ bK(ω) (∀ ω) (10)

One method of decorrelating transfer functions involves
placing an array in a diffuse acoustic field. When the cross-
correlation between microphones is described by γ(ω), the
spatial expectation of γ(ω) in a diffuse acoustic field is mod-
eled by [5],

E{γ(ω)} = sinc
(
ω ||p||

c

)
, (11)

where p and c denote the position vector between two micro-
phones and the sound velocity, respectively.

The expectation of γ(ω) can be calculated by averaging
the cross-correlation of the signals observed by two fixed mi-
crophones. The average is calculated over the signals arriv-
ing from various spatially distributed location of the sound
source. By positioning microphones widely apart in a diffuse
acoustic field, the transfer functions can be decorrelated as

lim
||p||→∞

E{γ(ω)} → 0. (12)

Therefore, placing an array in a diffuse acoustic field is a
method of decorrelating the transfer functions.

In our previous work, the filters were calculated to mini-
mize pN(ω) with deconvolution between the target and micro-
phones [4]. After pre-measuring (K+1)M transfer functions
from both the target and interferences to the microphones, the
filter was computed by substituting a(ω) instead of h(ω) into
Eq. (8) as

wCDS(ω) =
R−1(ω)a(ω)

aH(ω)R−1(ω)a(ω)
. (13)

Since the cross-correlation between microphones was re-
duced by capturing sounds in a diffuse acoustic field, pN(ω)
was minimized over a broad frequency range. However,
pre-measuring of many transfer functions was required to
calculate the filter in Eq. (13).

3. MULTICHANNEL INVERSE FILTER
BASED ON DIFFUSED SENSING

3.1. Basic properties of spatial correlation matrix when
capturing sound in diffused acoustic field

Let us consider minimizing pN(ω) based on diffused sensing
without pre-measuring of many transfer functions. Since the

transfer functions are decorrelated automatically, which sat-
isfies Eq. (12), when capturing sounds in a diffuse acoustic
field and K is a large number, R(ω) would be whitened as

R(ω) =

K∑
k=1

bk(ω)b
H
k (ω) ≈ I. (14)

Then, the filter of Eq. (13) is rewritten by omitting R(ω) as

w(ω) =
a(ω)

aH(ω)a(ω)
. (15)

This means that there are possibilities to minimize pN(ω) by
emphasizing the target source without constraints to minimize
pN(ω). If this is true, the number of transfer functions to be
pre-measured is drastically reduced from (K+1)M paths to
M target paths.

3.2. Methods of calculating multichannel inverse filter

We now explain the filter design methods for emphasizing the
target source. To discuss the relationships between pN(ω) and
filter length J discussed in Sec. 3.3, filter coefficients are
calculated in the time-domain. If the unit impulse function z
is output when convolving the filter with impulse responses
of the target using Eq. (16), the target source is emphasized
without distortion:

z = Aw, (16)

where

Am =

J︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

am(0) O
⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

J+L−1

am(1) am(0)
...

...
. . .

am(L−1) am(L−2)
. . . am(0)

am(L−1)
. . .

...
. . . am(L−2)

O am(L−1) ,

A = [A1, . . . ,AM ],

wm = [wm(0), . . . ,wm(J − 1)]T,

w = [wT
1 , . . . ,w

T
M ]T,

z = [

J−1︷ ︸︸ ︷
0, . . . , 0, 1,

L−1︷ ︸︸ ︷
0, . . . , 0]T,

where we call A the convolution matrix of the target source.
As a method for emphasizing the target source without

distortion, the multichannel inverse filter, which is the solu-
tion to the inverse problem of Eq. (16), is derived. Depending
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on the relationships between L, J , and M , several cases can
be considered to calculate the multichannel inverse filter [7].
When A is a square matrix, i.e., JI = (L−1)/(M−1), the
multichannel inverse filter is solved by

wI = A−1z. (17)

We call this solution the MIF-I method.
On the other hand, the multichannel inverse filter is cal-

culated using the overdetermined least squares method when
JII > (L−1)/(M −1) as

wII = A+z = AT(AAT)−1z, (18)

where A+ denotes the pseudo-inverse matrix of A. We call
this solution the MIF-II method. Even though JI <JII, the
target source can still be emphasized without distortion by
using either wI or wII if no common zero point exists [7].

3.3. Relationships between output interference power
and length of multichannel inverse filter

To determine the filter length of wII to form sharp directiv-
ity, we investigated the relationships between pN(ω) and JII.
Because pN(ω) is the total sum of the output power of K in-
terference sources, we calculate the response to the k-th inter-
ference source rk=[rk(0), . . . , rk(JII+L−2)]T by convolving
wII with impulse responses as

rk = BkwII = BkA
T(AAT)−1z, (19)

where Bk is the convolution matrix of the k-th interference
source and is composed of bk,m(l), in the same way that A
in Eq. (16) is composed of am(l). The covariance matrix of
A in Eq. (19) is expanded as

AAT=

⎡
⎢⎢⎢⎣

σ0 ϕ0,1 · · · ϕ0,JII+L−2
ϕ1,0 σ1 · · · ϕ1,JII+L−2

...
...

. . .
...

ϕJII+L−2,0 ϕJII+L−2,1 · · · σJII+L−2

⎤
⎥⎥⎥⎦ , (20)

where

σi =
M∑

m=1

i∑
l=0

a2m(i− l), (21)

ϕi,j =

M∑
m=1

min(i,j)∑
l=0

am(i− l)am(j − l), (22)

and am(i) = 0 when i >L−1.
When capturing sounds in a diffused acoustic field, am(l)

becomes a long uncorrelated series such as white noise. Since
then the autocorrelation function of am(l) has a sharp peak,
such as a unit impulse, ϕi,j will decrease automatically. If all
ϕi,j are approximated to zero, Eq. (20) is rewritten as

AAT ≈ diag [σ0, . . . , σJII+L−2] . (23)
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Fig. 1. Room conditions and array structure

By substituting Eq. (23) into Eq. (19), rk is calculated by

rk ≈ BkA
T[

JII−1︷ ︸︸ ︷
0, . . . , 0, 1/σJII−1,

L−1︷ ︸︸ ︷
0, . . . , 0 ]T, (24)

where the i-th component of rk is

rk(i)=

∑M
m=1

∑min(i,JII−1)
l=0 bk,m(i− l)am(JII − l−1)∑M
m=1

∑JII−1
l=0 a2m(JII − l−1)

,

(25)

and bk,m(i) = 0 when i > L−1. Since am(l) and bk,m(l)
are decorrelated in a diffused acoustic field, the numerator of
Eq. (25) can be reduced automatically. The denominator of
Eq. (25) is maximized by increasing JII so that it is greater
than L. Thus, we use JII=L to minimize the norm of rk then
pN(ω) can be minimized.

4. NUMERICAL SIMULATIONS

4.1. Simulation conditions

Numerical simulations were conducted to evaluate the reduc-
tion in pN(ω) in a diffused acoustic field. Figure 1 shows the
room conditions used to generate diffusely reflected impulse
responses using the image method [8]. We used three types
of arrays whose microphones were respectively positioned at
the vertexes of (M1) a regular icosahedron (M =12), (M2)
a truncated octahedron (M =24), and (M3) a C60 fullerene
(M=60). A target source arriving from θT=45 degrees and
interference sources (K=180) were placed 1.5 meters from
the array center. Since the impulse response had L=2048
taps, and the reflection coefficient of the walls was 0.85, many
reflected sounds were included in the impulse response. Other
parameters are listed in Table 1. The beamforming filters
were calculated using the following four methods: (F1) the
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Table 1. Simulation parameters
Sampling frequency 8.0 kHz
Analyzed frequency range 0.5 kHz – 3.5 kHz
Number of microphones, M 12, 24, 60
Diameter of array 0.6 m
Arrival direction of target source, θT 45 deg
Number of interference sources, K 180 (Angular interval: 1 deg)
Impulse response length, L 2048 taps
Room size 4.2 m(W)×6.7 m(D)×3.3 m(H)
Reflection coefficient of walls 0.85

ML method in Eq. (8) with J = 16384 taps, (F2) the con-
ventional diffused sensing (CDS) method in Eq. (13) with
J = 16384 taps, (F3) the MIF-I method in Eq. (17) with
JI = (L−1)/(M−1) taps, and (F4) the MIF-II method in
Eq. (18) with JII=L taps.

4.2. Simulation results

Figure 2 shows the frequency averaged pN(ω), which was nor-
malized by the response power to the target transfer functions
when using the four filter design methods. Since the trans-
fer functions of both the target and interferences sources were
known when using (F2) the CDS method, pN(ω) was mini-
mized in all four filter design methods. Although pN(ω) was
not minimized with (F3) the MIF-I method, (F4) the MIF-
II method was effective in decreasing pN(ω) even though it
was calculated using the transfer functions of the target source
only. Figure 3 shows the directivity patterns when using (M2)
the truncated octahedron array. With (F4) the MIF-II method,
sharp directivity was formed over a broad frequency range,
as it was using (F2) the CDS method. These results shows
that sharp directive beamforming based on diffused sensing
was achieved even when the transfer functions of interference
sources were unknown.

5. CONCLUSION

We investigated the performances of various filter design
methods in reducing the output interference power when cap-
turing sounds based on diffused sensing. Through theoretical
analysis and numerical simulations, we showed that the out-
put interference power was reduced sufficiently by using the
multichannel inverse filter, which was designed to derever-
berate the target paths only. Therefore, the length of filter
should be the same as that of impulse response.

Other issues require further study, including the use of
blind deconvolution techniques to achieve sharp directivity
without pre-measuring the transfer functions of the target
source and determining how to optimize the array structure to
decorrelate transfer functions.
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