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ABSTRACT

In this paper an extension of the classical Fourier series for
analysis of non-stationary signals with time-varying spectral
content is presented. This, in comparison to the classical se-
ries, allows reducing the number of Fourier coefficients re-
quired to represent the signal. The proposed extended Fourier
series can be used for time-varying filtering, which in turn can
be used for recovery of the signals from level-crossing sam-
ples. This has been demonstrated by numerical simulations
on different test signals.

Index Terms— Extended Fourier series, time-varying fil-
tering, level-crossing sampling, signal reconstruction

1. INTRODUCTION

The classical Fourier series (FS) allows periodic signals to be
expressed in terms of sine and cosine functions with frequen-
cies that are determined by the period of the signal and do not
change in time.

When the signals with time-varying spectral content are
considered, then instead of FS more advantageous can be a
proposed extended Fourier series (EFS), which allows peri-
odic signals to be expressed in terms of sine and cosine func-
tions with frequencies that are integer multiples of the fun-
damental frequency that varies in time. If this frequency is
chosen according to the time-varying bandwidth of the sig-
nal, then the number of components representing the signal
reduces in comparison to the classical FS.

The time-varying bandwidth, as shown in [1], can also be
taken into account to optimally sample the signals with sam-
pling rate determined by the local bandwidth of the signal
[2]. However, in practice, such sampling is difficult to im-
plement directly since it requires the knowledge of the local
bandwidth. Instead, an alternative signal-dependent sampling
technique, called a level-crossing (LC) sampling [3], can be
used. In this case the samples are taken every time the signal
crosses any of the previously set levels, and the sampling rate
naturally adapts to the local bandwidth of the signal.

In order to reconstruct the signal from the obtained LC
samples, an iterative algorithm with time-varying filtering can
be used. A passband of the filter should vary according to the
local bandwidth of the signal and can be estimated from the
given LC samples.

For time-varying filtering, an extended Fourier transform
(EFT) and its inverse defined in [4] can be used, however,
for numerical calculations it is more convenient to use the
proposed EFS, since in this case only a limited number of EFS
components at certain frequencies are needed to be calculated
in order to find the time-varying filtered version of the signal.
It can also be shown that EFT follows from EFS if the period
of the signal tends to infinity.

2. EXTENDED FOURIER SERIES

Periodic signals s(t) with period T can be expressed in com-
plex Fourier series (FS) as

s(t) =

∞∑
n=−∞

cne
jn 2π

T t, (1)

where coefficients cn are calculated as

cn =
1

T

∫ T

0

s(t)e−jn
2π
T tdt (2)

These coefficients are obtained by minimizing the mean
square error between s(t) and the right side signal of equa-
tion (1).

Now, given a periodic positive function g(t) > 0 with
period T , the same periodic signals s(t) can be expressed in
extended Fourier series (EFS) as

s(t) =

∞∑
n=−∞

dne
jn 2π

Φ(T )
Φ(t), (3)

where

dn =
1

Φ(T )

∫ T

0

s(t)

g(t)
e−jn

2π
Φ(T )

Φ(t)dt (4)
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Fig. 1. Transformation of s(t) to y(φ) by Φ(t) such that
y(Φ(t)) = s(t).

and

Φ(t) =

∫ t

0

1

g(τ)
dτ (5)

In this case the coefficients dn are obtained by minimizing
the mean 1/g(t)-weighted square error between both sides of
(3) and considering the 1/g(t)-weighted orthogonality of the
base functions∫ T

0

1

g(t)
ejn

2π
Φ(T )

Φ(t)e−jk
2π
Φ(T )

Φ(t)dt = Φ(T )δn,k (6)

EFS can also be obtained from Fig. 1 by expressing the
signal y(φ), where y(φ = Φ(t)) = s(t), in the classical FS as

y(φ) =

∞∑
n=−∞

dne
jn 2π

Φ(T )
φ (7)

with coefficients dn being

dn =
1

Φ(T )

∫ Φ(T )

0

y(φ)e−jn
2π
Φ(T )

φdφ (8)

Now, by putting φ = Φ(t) into (7) and (8), the expressions
(3) and (4) are obtained.

If only |n| ≤ N terms of EFS are used to approximate the
signal, then the mean 1/g(t)-weighted square error between
s(t) and its approximation ŝN (t) is

PerrN =
1

T

∫ T

0

1

g(t)

(
s(t)− ŝN (t)

)2
dt =

=
1

T

∫ T

0

1

g(t)
s2(t)dt− Φ(T )

T

N∑
n=−N

|dn|2
(9)
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(a) Time-varying bandwidth of the low-pass filter
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(b) Input (gray) and output (black lines) signals of the filter

Fig. 2. Examples of time-varying filtering.

From (9) it follows that Bessel’s inequality and Parseval’s
identity in this case can be written as

1

Φ(T )

∫ T

0

1

g(t)
s2(t)dt ≥

N∑
n=−N

|dn|2 (10)

and
1

Φ(T )

∫ T

0

1

g(t)
s2(t)dt =

∞∑
n=−∞

|dn|2 (11)

The special case when g(t) = 1 leads to classical Fourier
series.

3. EXTENDED FOURIER TRANSFORM

Non-periodic signals of finite length can also be decomposed
into EFS components – in this case the period T and so the
value Φ(T ) due to monotonic increase of Φ(t) are assumed
to tend to infinity. In result the coefficients dn and the dis-
tance n 2π

Φ(T ) between components become infinitely small.
To avoid such small values, both sides of (4) are multiplied
by Φ(T ) and the discrete values n 2π

Φ(T ) are replaced by con-
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tinuous variable ωg . In result the obtained expression

lim
T→∞

dnΦ(T ) =

∫ T

0

s(t)

g(t)
e−jωgΦ(t)dt = S(ωg) (12)

conforms to the definition of an extended Fourier transform
(EFT) given in [4].

EFT can also be obtained from the classical FT by apply-
ing it to the signal y(φ) shown in Fig. 1 and putting φ = Φ(t)
into

Y (ωg) =

∫ ∞
−∞

y(φ)e−jωgφdφ (13)

4. TIME-VARYING FILTERING

After decomposing the signal s(t) into EFS, the coefficients
dn corresponding to frequencies n 2π

Φ(T ) are given. In order
to perform the time-varying filtering of s(t) from Ωmin to
Ωmax, only those coefficients dn with indices n following
from Ωmin ≤ |n 2π

Φ(T ) | ≤ Ωmax are used in (3) to calculate
the approximation of s(t)

y(t) =
∑

|n|∈[Nmin,Nmax]

dne
jn 2π

Φ(T )
Φ(t), (14)

where

Nmin = dΩminΦ(T )

2π
e, (15)

and

Nmax = bΩmaxΦ(T )

2π
c (16)

The obtained signal y(t) can be assumed to be the output of
the time-varying filter with passband changing according to
the function 1/g(t).

Examples of low-pass filtering with time-varying band-
width (Fig. 2a) are shown in Fig. 2b – the gray lines are the
input, while the black lines – output signals of the filter. The
first three signals (starting from up) are cosines with frequen-
cies 0.1, 0.6 and 1.4 Hz, and the fourth is the piecewise con-
stant signal. As it follows from Fig. 2, the frequency prop-
erties of the output signals correspond to time-varying band-
width of the filter.

5. RECONSTRUCTION FROM LEVEL-CROSSING
SAMPLES

Time-varying filtering can be used for reconstructing the sig-
nals from samples obtained in signal-dependent way with
sampling density depending on the local bandwidth of the
signal. One such method is a level-crossing (LC) sampling
with signal samples taken every time the signal crosses any of
the previously set levels [3]. Due to obtained samples s(tk)
are placed non-uniformly, an appropriate algorithm for recov-
ery of the signal s(t) is needed. One such algorithm given in

[5] allows recovery of bandlimited to [−Ω,Ω] signals, if the
maximum distance between the sampling points

∆tmax = supk∈Z(tk+1 − tk) <
π

Ω
(17)

The problem is that in LC sampling case the condition (17)
can often be only satisfied if a large number of closely located
levels are used, which leads to large sampling densities and
reduced energy efficiency of data acquisition.

The necessary condition (17) for recovery of s(t) from
s(tk) can be restated if the signal s(t) is transformed to y(φ)
by the function Φ(t) as shown in Fig. 1. Now, if y(φ) is ban-
dlimited to [−Ωg, Ωg], then it can be reconstructed from its
non-uniformly placed samples y(φk), if the maximum dis-
tance between the sampling points

∆φmax = supk∈Z(φk+1 − φk) <
π

Ωg
(18)

By putting φ = Φ(t) into (18), the necessary condition for
recovery of EFT bandlimited to [−Ωg, Ωg] signal s(t) from
s(tk) becomes:

supk∈Z
(
Φ(tk+1)− Φ(tk)

)
<

π

Ωg
, (19)

and the reconstruction is performed similarly as in [5] by the
iterative algorithm

ŝ0(t) = A[s̆s(tk)(t)],

ŝi+1(t) = ŝi(t) +A[s̆(s−si)(tk)(t)],
(20)

where i ≥ 0 denotes the number of iteration, s̆s(tk)(t) is ob-
tained by piecewise constant or linear interpolation of s(tk),
and the operator A, given the function Φ(t), denotes the
time-varying filtering of the signal to limit its bandwidth to
[−Ωg, Ωg] as described in the previous section. The recon-
struction result, when i tends to infinity, is lim

i→∞
ŝi(t) = s(t).

In case of piecewise constant interpolation the signal
s̆s(tk)(t), k = 1, 2, . . . ,K, is written as

s̆s(tk)(t) =

N∑
k=1

s(tk)ψk(t), (21)

where

ψk(t) =

{
1, if τk ≤ t < τk+1

0, other
(22)

and τ1 = t1, τK+1 = tK and τk = tk−1+tk
2 if k ∈ [2,K]. The

EFS coefficients of s̆s(tk)(t) in this case can be calculated as

dn =
j

2πn

K∑
k=1

s(tk)
(
e−j

2πn
Φ(T )

Φ(τk+1)−e−j
2πn
Φ(T )

Φ(τk)
)

(23)

By comparing the condition (19) with (17), it can be con-
cluded that the maximum distance ∆tmax between the sam-
pling points in the latter case can exceed the Nyquist step and
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Fig. 3. Reconstruction of the first signal.

is determined by the function Φ(t). The question that remains
to be answered in order to apply the algorithm (20) for recov-
ery of s(t) from LC samples is: how to estimateΦ(t) (or time-
varying bandwidth of the signal) from the given LC samples?
This is the topic for the next section.

6. ESTIMATION OF TIME-VARYING BANDWIDTH
OF THE SIGNAL FROM LC SAMPLES

The local bandwidth of the filter should conform to the lo-
cal bandwidth fmax(t) of the signal. In [6] it was proposed
that fmax(t) equals the low-pass filtered version of the in-
stantaneous frequency of the first Intrinsic Mode Function
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Fig. 4. Reconstruction of the second signal.

(IMF) of the signal found by empirical mode decomposition
(EMD) [7]. Similar result can be obtained by analyzing the
first IMF of the signal found by local mean decomposition
(LMD) [8],[9]. In this case the time instants of local maxima
and minima of the first IMF closely match the time instants
tm of local maxima and minima of the signal, therefore the
conclusion is that fmax(t) can be estimated from the increas-
ing time sequence tm, m = 1, 2, . . ., as follows. At first, the
discrete values Φ(tm) = mπ are found and the continuous
function Φ(t) is obtained by the monotone cubic interpola-
tion of these values. Then, the derivative 1

2π
dΦ(t)
dt is found

and the time-varying bandwidth of the signal is assumed to
be equal to the low-pass filtered version of this derivative.
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In level-crossing sampling case the function Φ(t) can be
estimated from LC samples by considering that at least one
or more local maxima or minima of the signal are located
between two samples s(tk) and s(tk+1) if s(tk) = s(tk+1).
Given all the indices k′1 < k′2 < . . . < k′L ∈ [1,K] with

s(tk′l) = s(tk′l+1), the discrete values Φ̂
( tk′

l
+tk′

l
+1

2

)
= lπ are

found. Then, as previously, the continuous function Φ̂(t) is
obtained by the monotone cubic interpolation of these values,
and the time-varying bandwidth of the signal is assumed to
equal the low-pass filtered version of the derivative of Φ̂(t).

7. NUMERICAL RESULTS

Two test signals have been sampled by LC and then recon-
structed using the algorithm (20). The first signal shown
in Fig. 3a is composed of 3 similar components s1(t) =∑3
n=1 cos(knΦ(t)) with coefficients k1 < k2 < k3 and

frequencies shown in Fig. 3b by the solid lines, while the sec-
ond signal (Fig. 4a) is composed of 3 different components
s2(t) =

∑3
n=1 cos(Φn(t)) with instantaneous frequencies

shown in Fig. 4b.
The first step after obtaining the LC samples (black dots

in Fig. 3a and Fig. 4a) was to estimate the time-varying band-
width f̂max(t) of the signal as described in Section 6. The
obtained results are shown in Fig. 3b and Fig. 4b by the black
dashed lines. As it follows the estimated functions f̂max(t)
are close to the upper frequency traces present in the signals.

Given the functions f̂max(t), the signals were recon-
structed using the iterative algorithm (20). The error signals
s(t) − ŝi(t) after i = 20 iterations are shown in Figures 3a
and 4a by the black thin lines, while the mean square values
of the error signals after each iteration are shown in Fig-
ures 3c and 4c. The upper curves in both figures correspond
to the reconstruction when instead of time-varying filtering
the classical filtering with constant bandwidth is used, and
the lower curves are obtained when the estimated bandwidth
functions f̂max(t) are used. As it follows, better reconstruc-
tion is obtained in time-varying filtering case since larger
distances between sampling points are allowed.

8. CONCLUSIONS

The proposed extended Fourier series allows decomposing
the signals into sines and cosines with time-varying frequen-
cies. This allows reducing the number of discrete components
that represent the signals with time-varying spectral content,
if the fundamental frequency of EFS is chosen according to
the time-varying bandwidth of the signal.

The proposed series can be used for time-varying filtering
of the signal by finding its approximation composed of only
a limited number of components from the given frequency
band. The time-varying filtering with the passband corre-
sponding to the bandwidth of the signal can also be used for

recovery of the signal from the samples obtained in signal-
dependent way according to its local bandwidth. In compar-
ison to the classical filtering, larger distances between con-
secutive sampling points are allowed in order to recover the
signal.
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