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ABSTRACT

In this paper we consider a combination of arbitrary number
of LMS adaptive filters. The filters are connected in parallel
and use the same input and desired signals. They differ by the
step sizes, which gives the structure ability to achieve fast ini-
tial convergence together with gradually diminishing steady
state error level. In the paper we show that the straightfor-
ward problem statement leads to a necessity to solve a singu-
lar linear system of equations. We therefore propose a regu-
larization approach to deal with the problem. Results of the
transient analysis of the resulting algorithm are presented to-
gether with some simulation results.

Index Terms— Adaptive filtering, regularization, analysis

1. INTRODUCTION

Most popular of the adaptive filtering schemes, proposed over
the years, is probably the least mean square (LMS) family [1].
The LMS filters are controlled by a step size parameter, that
determines the convergence speed and the steady state error
level achieved by the algorithm. Large step size leads to a fast
initial convergence of the algorithm but the mean square error
in steady state is large in this case. In contrary a small step
size results in a small steady state error but the convergence
of the algorithm is slow [2, 3].

A recently proposed solution to this problem is combining
the outputs of a number of adaptive filtering branches that use
different step sizes [4, 5, 6, 7]. The solution has two stages.
At the first stage there are several adaptive filters running in
parallel on the same task. At the second stage the outputs of
the adaptive filters are linearly combined to form the output of
the system. This solution, involving two filters and a convex
combination of those was first proposed in [8]. Later on there
has been significant interest in the scheme and both convex
combinations of two filters, where the mixture weights are
constrained to be positive and affine combinations where this
constraint has been removed have been investigated. Most of
the papers use some nonlinear schemes to compute the mixing
parameter. More lately an output signal based scheme that
simplifies computation of the branch weights was proposed
in [9] and [10].

Recently the two filter scheme was generalized to a mix-
ture ofM filters in [6] and different mixing strategies in which
the final outputs are formed as the weighted linear combina-
tion of the outputs of several constituent adaptive algorithms
was studied. The steady state performance in terms of the fi-
nal mean square error (MSE) of the adaptive mixtures was
investigated. The scheme can again be seen as consisting
of two adaptive stages. At the first stage there are a number
of adaptive filters running the same task but having different
step sizes. These parallel units can be considered as diversity
branches that can be used to improve the overall performance.
At the second stage the output signals of the adaptive branches
are mixed together. It was demonstrated in [6] that the mix-
ture approaches can greatly improve the performance of the
constituent filters.

In this paper we examine the task of computing the
weights required to combine the output signals from the
parallel filters. We conclude that straightforward statement
of the mixing weight computation problem is not well posed
as we would need to invert a singular matrix. We therefore
propose a regularized solution to the problem at hand and
provide the results of its analysis. We will assume throughout
the paper that the signals are complex–valued and that the
combination scheme uses LMS adaptive filters. The length of
the filters is assumed to be equal in all the branches.

The italic, bold face lower case and bold face upper case
letters will be used for scalars, column vectors and matrices
respectively. The superscript ∗ denotes complex conjugation
and H Hermitian transposition of a matrix. The symbol 1 is
used to denote the column vector of all ones. The operator
E[·] denotes mathematical expectation, tr[·] stands for trace
of a matrix.

2. ALGORITHM

Let us consider M adaptive filters running in parallel on the
same input signals, as shown in Figure 1. Each of the filters
is updated using the LMS adaptation rule

wi(n) = wi(n− 1) + µie
∗
i (n)x(n), (1)

ei(n) = d(n)−wH
i (n− 1)x(n), (2)

d(n) = wH
o x(n) + eo(n). (3)
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Fig. 1. The combined adaptive filter.

In the above equations the vector wi(n) is the lengthN vector
of coefficients of the i-th adaptive filter, with i = 1, 2, . . . ,M .
The vector wo is the true weight vector we aim to identify
with our adaptive scheme and x(n) is the N input vector,
common to all adaptive filters. The input process is assumed
to be a zero mean wide sense stationary Gaussian process.
The desired signal d(n) is a sum of the output of the filter to
be identified and the Gaussian, zero mean i.i.d. measurement
noise eo(n). We assume that the measurement noise is statis-
tically independent of all the other signals. µi is the step size
of i–th adaptive filter.

The outputs of the adaptive filters of the first stage are
combined according to

y(n) = aH(n)y(n), (4)

where y(n) is the M the vector of output signals of the in-
dividual filters with elements yi(n) = wH

i (n − 1)x(n) and
the vector a(n) contains the mixing parameters ai(n). We re-
quire the sum of the mixing parameters to equal unity at each
time instant n

aH(n)1 = 1. (5)

The a priori system error signal is defined as difference
between the output signal of the true system at time n, given

by yo(n) = wH
o x(n) = d(n) − eo(n), and the output signal

of our adaptive scheme y(n)

ea(n) = yo(n)− aH(n)y(n). (6)

The mixing parameters ai(n) can be found by solving the
following constrained optimization problem

min
a
E
[
|ea(n)|2

]
subject to aH1 = 1. (7)

Alternatively we may rewrite the above as unconstrained min-
imization problem replacing a∗M (n) by 1− a∗1(n)− a∗2(n)−
. . .− a∗M−1(n).

Let us define a vector consisting of the first M − 1 com-
bination parameters ai(n) and denote the vector by ā(n) so
that

a(n) =

[
ā(n)
aM (n)

]
. (8)

Likewise we define the vector of M − 1 first filter output sig-
nals yi(n)-s as ȳ(n). Taking the conjugate derivative of the
criterion we obtain

∂E
[
|ea(n)|2

]
∂a∗(n)

= y(n)yH(n)a(n)− y(n)yo(n). (9)

After setting the derivative to zero, substituting aM = 1 −
1H ā and simplifying we find that the cost function we wish
to minimize, E[|ea(n)|2], has in this problem no unique min-
imum point. Instead the minimum is reached on the entire
hyperplane

E[yM (n)− y0(n)] = E[āH(n)(yM (n)1− ȳ(n))], (10)

where E[|ea(n)|2 = 0. In an adaptive solution this would
mean that the weights ai(n) can freely move around on the so-
lution hyperplane, which would be inconvenient. In order to
fix the minimum of the criterion to a certain point we need to
add another condition. A natural additional condition would
be a requirement that the Euclidean norm of the solution vec-
tor were minimal. This can be accomplished by adding the
term βāH(n)ā(n) to the mean squared error in our criterion
function. The constant β shows the relative importance of the
two requirements and is treated as a design parameter. We
thus need to solve the following optimization problem

a = arg min
a
E
[
|ea(n)|2 + βāH(n)ā(n)

]
. (11)

The conjugate derivative of this criterion with respect to
the vector of mixing weights ā(n) reads

∂E
[
|ea(n)|2 + βāH(n)ā(n)

]
∂ā∗(n)

= E [(−ȳ(n) + 1yM (n))(yo(n)− yM (n))∗]

+E
[
(−ȳ(n) + 1yM (n))(−ȳ(n) + 1yM (n))H ā(n)

+2βā(n)] .

2
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Setting the derivative to zero and solving the resulting system
of equations with respect to ā(n) yields

ā(n) = E
[
(−ȳ(n) + 1yM (n))(−ȳ(n) + 1yM (n))H

+2βI]
−1 (12)

E [(ȳ(n)− 1yM (n))(d(n)− yM (n))∗)] .

Let us note that if β = 0 the determinant of the matrix in
the above equation equals zero, which explains the need for
regularization. Here we have replaced the true system out-
put signal yo(n) by its observable noisy version d(n). Note,
however, that because we have made the standard assumption
that the input signal x(n) and measurement noise eo(n) are
independent random processes, this can be done without in-
troducing any error into our calculations.

3. ANALYSIS

In this section we provide expressions that characterize tran-
sient behaviour of the mixture of M adaptive filters i.e. we
are interested in deriving formulae that characterize entire
course of adaptation of the algorithm. Before we can pro-
ceed we need, however, to introduce some notations. First let
us denote the weight error vector of i–th filter as w̃i(n) =
wo − wi(n). The weight error vector of the entire mixture
will then be

w̃(n) =

M∑
i=1

ai(n)w̃i(n). (13)

The mean square deviation of the mixture is given by

MSD = E
[
w̃H(n)w̃(n)

]
(14)

=

M∑
k=1

M∑
l=1

E
[
a∗k(n)w̃H

k (n)w̃l(n)al(n)
]
.

The a priori estimation error of i–th adaptive filter of the
first stage is defined as

ei,a(n) = w̃H
i (n− 1)x(n). (15)

It follows from (6) that we can express the a priori error of
the mixture as

ea(n) =

M∑
i=1

a∗i (n)ei,a(n) (16)

and because ai(n) are according to (12) computable through
mathematical expectations and are, hence, deterministic, we
have the following expressions for the excess mean square
error EMSE of the combination

E[|ea(n)|2] =

M∑
k=1

M∑
l=1

a∗k(n)al(n)

·E
[
w̃H
k (n− 1)x(n)xH(n)w̃l(n− 1)

]
=

M∑
k=1

M∑
l=1

a∗k(n)al(n)EMSEk,l (17)

Hence the EMSE can be expressed as a linear combination
of the terms

EMSEk,l = E
[
w̃H
k (n− 1)x(n)xH(n)w̃l(n− 1)

]
(18)

with weights being products of ai(n).
Next let us consider computation of the vector ā(n). Not-

ing that yi(n) = wH
i (n − 1)x(n) we can rewrite the terms

involved in (12) as follows. First, the i, j–th element of the
matrix

(1yM (n)− ȳ(n))(1yM (n)− ȳ(n))H (19)

equals

w̃H
i xxHw̃j − w̃H

i xxHw̃M − w̃H
MxxHw̃j + w̃H

MxxHw̃M

(20)
and the vector

(1yM (n)− ȳ(n))(d(n)− yM (n)) (21)

=


w̃H

1 xxHw̃M

w̃H
2 xxHw̃M

...
w̃H
M−1xxHw̃M

− 1w̃H
MxxHw̃M .

It thus turns out that in order to reveal the behaviour of
both EMSE(n) and a(n) we need to investigate the terms
EMSEk,l = E[w̃H

k (n − 1)x(n)xH(n)w̃l(n − 1)]. Those
terms have, however, been analysed in [11], where it has been
shown that

EMSEkl ≈ E
[
w̃H
k (n− 1)Rxw̃l(n− 1)

]
(22)

= tr
{
E
[
vHk (n− 1)Λvl(n− 1)

]}
=

N−1∑
i=0

λiE
[
v∗k,i(n− 1)vl,i(n− 1)

]
,

where λi is the i–th eigenvalue of the input signal covariance
matrix Rx and vk,i is the i–th component of transformed
weight error vector of the k–th filter vk(n) = QHw̃k(n).
The matrix Q here is the matrix that has the eigenvectors of
the input signal covariance matrix as its columns. The matrix
Λ is a diagonal matrix having eigenvalues associated with the
corresponding eigenvectors on its main diagonal.

The individual expectation in the above equation equals

E[v∗k,i(n)vl,i(n)] = (1− µkλi)n (1− µlλi)n (23)

·

[
|vi(0)|2 +

Jmin

λ2i −
λi

µl
− λi

µk

]

− Jmin

λ2m − λi

µl
− λi

µk

.

In the above Jmin is the minimum possible error power pro-
duced by the Wiener filter for the problem at hand and we
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have assumed that the filters are all initialized to the same
value vk,i(0) = vi(0),∀k.

The EMSE of the combined filter can now be computed
as

EMSE =

M∑
k=1

M∑
l=1

a∗k(n)al(n)EMSEk,l (24)

=

M∑
k=1

M∑
l=1

a∗k(n)al(n)

·
N−1∑
i=0

λiE
[
v∗k,i(n− 1)vl,i(n− 1)

]
,

where the components of typeE
[
v∗k,i(n− 1)vl,i(n− 1)

]
are

given by (23). To compute a(n) we use (12) with (19) and
(21) substituting (23) for its individual components.

4. SIMULATION RESULTS

In the simulation study we have combined three 64 tap long
adaptive filters and selected the sample echo path model num-
ber one from [12] to be the unknown system to identify. The
mathematical expectations have been in simulations replaced
by exponential averaging

Pu(n) = (1− γ)Pu(n− 1) + γp(n), (25)

where P is the averaged value, p is the value to be averaged
and γ is a constant.

Let us first illustrate the problem we deal with in this pa-
per. In Figure 2 we show the norm of weight vector a(n) with
and without the term 2βI in (12). If the regularization term is
missing, the solution wanders around and never converges to
a single value. This is seen observing that the Euclidean norm
of the solution behaves randomly until the end of the simula-
tion. The Euclidean norm of the solution with 2βI added con-
verges on the other hand to a determined value. The step sizes
were selected µ1 = 0.05, µ2 = 0.0005 and µ3 = 0.0002 in
this simulation and the input was white Gaussian noise.

In the second simulation example we use a coloured in-
put signal created by passing a unity variance white Gaussian
noise through a filter with transfer function

H2(z) =
1

1 + 0.5z−1 + 0.2z−2 − 0.2z−3 − 0.1z−4
. (26)

The exponential averaging parameter γ = 0.01.
The resulting excess mean square error of the combina-

tion of three filters is shown in Figure 3. The simulation
curve is averaged over 100 trials.The regularization param-
eter is β = 5 · 10−4 in this example. We see a period of
rapid initial convergence followed by a short stabilization pe-
riod. Starting from sample time 5000 another convergence of
the system occurs ending at a lower error level around sample

Fig. 2. Time–evolutions of |a|2 with β = 0 and β = 0.1.

time 15000. Then there is another stabilization period and the
third convergence happens between sample times 25000 and
40000. There is a good match between the simulation and
theoretical curves.

Fig. 3. Time–evolution of EMSE with µ1 = 0.005, µ2 =
0.0008, µ3 = 0.0004 and σ2

v = 5 · 10−3.

The time evolution of the weights ai is shown in Figure
4. In the beginning of the simulation example the weight fac-
tor corresponding to the fastest adapting filter, a1, is close
to one and the other two are close to zero, meaning that the
initial convergence of the combination is determined by the
fastest adapting filter. After a while, when the fastest filter
approaches its steady state, its weight starts to diminish and
the second filter takes over. This happens around the sample

4
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Fig. 4. Time–evolution of ai with µ1 = 0.005, µ2 = 0.0008,
µ3 = 0.0004 and σ2

v = 5 · 10−3.

time 10000. At the end of the simulation example the weight
of the slowest adapting filter, a3, approaches to unity while
the other two approach to zero meaning that the steady state
performance of the combination is determined by the most ex-
act filter. The theoretical curves match the simulation results
well.

Finally in Figure 5 we show the learning curves of the
individual filters together with the learning curve of the com-
bination. We see that the convergence speeds of the individ-
ual filters are all different and that the learning curve of the
combination generally follows the individual filter with the
smallest EMSE.

5. CONCLUSIONS

In this paper we investigated the combination of M adaptive
filters. It has been shown that in order to solve for the optimal
weights of the filter output signals we need to solve a singular
linear system of equations. In order to cope with the problem
a regularization approach was proposed. Analyses results of
the resulting algorithm were provided.

6. REFERENCES

[1] B. Widrow and S.D. Stearns, Adaptive Signal Processing,
Prentice Hall, 1985.

[2] S. Haykin, Adaptive Filter Theory, Fourth Edition, Prentice
Hall, 2002.

[3] A. H. Sayed, Adaptive Filters, John Wiley and sons, 2008.

[4] R. Candido, M. T. M. Silva, and V. H. Nascimento, “Tran-
sient and steady-state analysis of the affine combination of two

adaptive filters,” IEEE Transactions on Signal Processing, vol.
58, pp. 4064–4078, August 2010.

Fig. 5. Time–evolution of individual filter EMSEs with µ1 =
0.005, µ2 = 0.0008, µ3 = 0.0004 and σ2

v = 5 · 10−3.

[5] N. J. Bershad, J. C. Bermudez, and J. H. Tourneret, “An affine
combination of two LMS adaptive filters – transient mean–
square analysis,” IEEE Transactions on Signal Processing, vol.
56, pp. 1853–1864, May 2008.

[6] S.S. Kozat, A.T Erdogan, A.C Singer, and A.H Sayed, “Steady
state MSE performance analysis of mixture approaches to
adaptive filtering,” IEEE Transactions on Signal Processing,
vol. 58, pp. 4050–4063, August 2010.

[7] T. Trump, “Steady state analysis of an output signal based com-
bination of two NLMS adaptive filters,” in Proc. 17th Euro-
pean Signal Processing Conference, Glasgow, Scotland, 2009,
pp. 1720–1724.

[8] M Martinez-Ramon, J. Arenas-Garcia, A. Navia-Vazquez, and
A. R. Figueiras-Vidal, “An adaptive combination of adaptive
filters for plant identification,” in Proc. 14th International Con-
ference on Digital Signal Processing, Santorini, Greece, 2002,
pp. 1195–1198.

[9] T. Trump, “An output signal based combination of two NLMS
adaptive algorithms,” in Proc. 16th International Conference
on Digital Signal Processing, Santorini, Greece, 2009.

[10] L. A. Azpicueta-Ruiz, A. R. Figueiras-Vidal, and J. Arenas-
Garcia, “A new least squares adaptation scheme for the affine
combination of two adaptive filters,” in Proc. IEEE Interna-
tional Workshop on Machine Learning for Signal Processing,
Cancun, Mexico, 2008, pp. 327–332.

[11] T. Trump, “Output signal based combination of two NLMS
adaptive filters - transient analysis,” Proceedings of the Esto-
nian Academy of Sciences, vol. 60, no. 4, pp. 258–268, 2011.

[12] ITU-T Recommendation G.168 Digital Network Echo Can-
cellers, ITU-T, 2009.

5


