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ABSTRACT

Nano ElectroMechanical Systems are a new class of sensors
that offers high sensitivity and opens new perspectives in the
mass spectrometry field. This acquisition is performed in
counting-mode, and the main tasks of associated information
processing are to detect the molecules, to quantify their re-
spective mass and to combine this information in order to re-
cover the mass spectrum of the analysed solution.

We propose a joint detection-quantification method based
on a hierarchical description of the measurement system.
Computation is done using a Reversible Jumps Monte-Carlo
Markov-Chain algorithm.

The approach we are describing in this communication
solves the two problems of the joint impulse deconvolution
on multiple output signals (multi-mode acquisition) and the
non-linear relation between the observed signals and the mass
of molecules, including the localization of the molecules on
the sensor. We validate our method on both simulated and
experimental data.

Index Terms— Inverse problems, Information pro-
cessing, Statistical signal processing, Mass spectrometry,
Bayesian inference, NEMS, Nanotechnologies, MCMC, Pro-
teomics, Detection-Estimation

1. INTRODUCTION

Mass spectrometry is a research field aiming at estimating the
molecular profile of a given solution. Many technologies en-
ables this estimation, such as Time-of-Flight (ToF), ion traps
or quadrupole selection [1]. One particularly significant ap-
plication of mass spectrometry is the detection of cancers in
the early stage [2]. Related information processing issues are
typically the estimation of a molecular profile based on de-
vice output signal, the search of discriminant molecules for a

particular disease, or the classification of samples [3]. Con-
ventional Mass Spectrometry instruments are all based on a
flow-mode principle, which means that the molecules are ion-
ized to get an ion flow which is then separated and detected.

New sensors, called Nano ElectroMechanical Systems
(NEMS), are currently developed in CEA-Leti in collabora-
tion with the California Institute of Technology within the
NanoVLSI alliance [4]. These sensors are sensitive enough
to detect one single molecule in the mass range of a protein
(hundreds of kDa) by tracking shifts of resonant frequency
of the sensor over time. The first proof of concept of NEMS
mass spectrometry was given by Naik et al. [5]. We pre-
viously described a Bayesian method to estimate resonant
frequency shifts in the mono-mode acquisition case [6]. This
communication extends this previous method to a multi-mode
acquisition, enabling the estimation of a mass spectrum.

2. PROBLEM STATEMENT

2.1. Measurement principle

A typical device used for Mass Spectrometry is given in Fig-
ure 1. To track resonant frequency over time, the NEMS res-
onator (yellow part in Figure 1) is inserted into an electronic
system containing an electrostatic actuator (blue part in Fig-
ure 1), in order to excite the sensor and to create an in-plane
motion, and two piezoresistive gauges (red part in Figure 1),
in order to detect the position of the sensor.

The physical principle of molecules detection has been
summarized by Dohn et al. [7]. The NEMS sensor can be
described as a resonator with a resonant frequency f0 given
by f0 =

√
s
M0

, where s denotes the resonator spring con-

stant and M0 denotes the effective mass of the sensor. The
resonator presents several vibration modes. Therefore, it has
several resonant frequencies, named harmonics, and written

EUSIPCO 2013 1569741925

1



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

Fig. 1. Colourized scanning electron microscope image of a
NEMS sensor

fk for the k-th harmonic.
Let us suppose that a molecule of mass δm lands on the

sensor at the normalized position z (varying between 0 and 1).
To first order approximation and under the assumption that the
resonator spring constant s is not affected by the mass addi-
tion, the new resonant frequency fk,δm on a specific harmonic
k, can be written as:

fk,δm = fk,0 − αk δm φ2k (z) (1)

In this equation, αk is the constant gain on the k-th har-
monic and the function φ2k represents the variable gain on the
k-th harmonic depending on the molecule position. Expres-
sion of the non-linear functions φk is:

φk(z) = Ak (cosh(κkz)− cos(κkz))

+ Bk (sinh(κkz)− sin(κkz)) (2)

These functions are symmetric for a double-clamped ge-
ometry sensor, as the one used in this paper. Thus, the posi-
tion of the adsorbed molecule can indifferently be z or 1− z.

2.2. Observed signals model

In the previous subsection, we showed that the adsorption of a
molecule on the sensor leads to a drop of resonant frequency
on numerous harmonics, and that the amplitude of the fre-
quency shift depends on the mass and the position of the ad-
sorbed molecule. To monitor the sensor resonant frequency
over time, the NEMS sensor is included into an electronic
system based on a actuator, a detector of sensor position and a
phase-lock loop (PLL) electronic circuit (one PLL circuit per
harmonic observed). Under the assumption that the response
time of the PLL is significantly longer than the physical res-
onator’s response time to an adsorption, the elementary signal
ge k (t) induced on the k-th harmonic by the adsorption of a

molecule of mass δm at the position z is:

ge k (t) = gk (0)− αk δm φ2k (z)hk (t) (3)

where hk (t) is the response of the electronic system to a nor-
malized sharp change in resonant frequency of the sensor.

Now, let us consider the sequential adsorption of numer-
ous molecules. The mass of molecule with index i is written
mi, its position zi and its adsorption time ti. The output sig-
nal gk (t) is the addition of every elementary signals:

gk (t) = gk (0)−
N∑
i=1

αk mi φ
2
k (zi)hk (t− ti) (4)

The constant gain values in our case are α1 = 0.0498
and α2 = 0.1255 if the mass and the resonant frequency are
respectively expressed in kDa and in Hz.

The overall output signal gk(t) is also affected by noise,
whose origins are multiple [8] and will not be discussed here.
The noise contribution is modelled in section 3.3.

The signal is digitalized on T samples. These digital sig-
nals (one per harmonic), constituting the system output, are
smooth and contains fast decreasing changes synchronized on
every signals, corresponding to the adsorption of a molecule
on the sensor. In our case, the experiments were performed
using two harmonics.

The information processing aims at detecting frequency
changes and estimating the mass of the landed molecules.
Then, this information can be combined to estimate the mass
spectrum of the initial solution. Multi-mode signal acqui-
sition and first constitution of a NEMS Mass Spectrometry
spectrum are notably described by Hanay et al. [9].

3. BAYESIAN APPROACH

3.1. Motivations

We introduced the forward model in the previous section, i.e.
the physical equations linking the unknown quantities to the
observable ones (the signals). We propose here to use an in-
verse problem approach associated with the Bayesian frame-
work to recover the unknown quantities. We assume that
the parameters αk and the functions hk (t) and φk (z) are
known. The unknown parameters are the number of adsorbed
molecules N , the adsorption times {ti}, the mass of the ad-
sorbed molecules {mi} and their respective positions {zi}.

The expression of the forward problem is not sufficient
here. Indeed, without additional information, the inverse
problem is ill-posed in the sense of Hadamard [10]. The
problem must be regularized. Tikhonov [11] or Lasso [12]
are classical regularization schemes based on penalization.

We propose to use the Bayesian framework which offers
numerous advantages. Notably, this framework allows an au-
tomatic computation of the hyperparameters, provides more
robust solutions and gives ways to understand penalization

2
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methods. Besides, a link exists between Maximum A Poste-
riori (MAP) Bayesian estimation and penalization [13].

3.2. Bayesian estimation and prior distributions

The proposed Bayesian estimation framework is based on the
following probabilistic modelling of the observed signal gk(t)
and the unknown parameters of the forward model (4). Refer
to [14] for further information about the statistical distribu-
tions used in this communication.

The observed signals gk(t) depends on the following
unknown parameters N , {ti}, {mi}, {zi}. The noise is
parametrized by covariance matrix denoted as Σk and is
discussed in section 3.3.

Our Bayesian model is derivated from the Bernoulli-
Gaussian model [15]. The number of adsorbed molecules,
N , is considered as the sum of independent Bernoulli trials.
Thus, we assign a Binomial prior on N . The parameter of
success probability (or counting intensity) is denoted as π.

The π parameter also will be estimated by the Bayesian
algorithm. We assign the conjugate prior distribution, con-
sisting in a Beta distribution and denoted as B (π|aπ, bπ).
(aπ, bπ) are π prior distribution hyperparameters and will be
set to express prior information on intensity rate.

For each adsorption time {ti} we assign an uniform prior
on the acquisition period, denoted as U[0, T ] (ti) to express
our lack of knowledge on adsorption time. In the same way
for each adsorption normalized location {zi} we assign an
uniform prior between 0 (the extremity of the beam) and 0.5
(the middle of the beam), denoted as U[0, 0.5] (zi).

In the case of the mass of adsorbed molecules {mi}, we
assign a Gamma prior, to ensure their positivity, denoted as
G (mi|km, θm). (km, θm) are {mi} prior distribution hyper-
parameters and will be set to express prior information on the
mass distribution of the analysed mixture.

This model can be summed up with the graphical model
described in Figure 2.

ti g2(t)

hk, αk, Σk

mi

aπ, b π

Hyperparameters Instrument parameters

Observed signals

zi

N

Adsorbed

molecules

Model order

π

km, θm

0, T

0, 0.5

g1(t)

Fig. 2. Hierarchical model of the observed signals

3.3. Noise component

Incomplete knowledge of the noise components is translated
into the following approximations:

• We consider that the noise is additive, and independent
on each harmonic signals.

• We model the noise on each harmonic signal with a
centred multivariate normal probability density func-
tion. On each k-th harmonic signal, the noise covari-
ance matrix is denoted as Σk.

The crucial point is the structure of the covariance matrix.
Considering the noise is merely flicker noise (1/f noise), we
assume that the covariance matrix can be written as Σk =
σ2
kD

−1D−T where σk represents the noise level on the k-th
harmonic signal, and D is the derivation matrix. The values
for σk in our case are: σ1 = 0.87 and σ2 = 3.29.

3.4. A posteriori distribution

From the hierarchical model in the previous section, we can
deduce the posterior distribution of all unknown parameters.
We denote as D (·) the forward model described in equation
(4). For a given model dimension N , the posterior of {ti},
{mi}, {zi} and π parameters is:

p (t1, . . . tN ,m1, . . .mN , z1, . . . zN , π|N, g1, g2)
∝

∑2
k=1N (gk|D (t1, . . . tN ,m1, . . .mN , z1, . . . zN ) ,Σk)[∏N

i=1 U[0, T ] (ti)
] [∏N

i=1 G (mi|km, θm)
]

(5)[∏N
i=1 U[0, 0.5] (zi)

]
B (π|aπ +N, bπ + T −N)

4. INVERSION ALGORITHM

4.1. Structure

We propose in this paper to combine the Reversible-Jumps
Monte-Carlo Markov Chain (RJMCMC) and the Monte-
Carlo Markov Chain (MCMC) algorithms [14]. In this para-
graph, we describe the overall structure of our algorithm,
which is constituted of two loops, described in next para-
graphs. The first loop consists in a RJMCMC algorithm and
chooses the model dimension N according to a Marginalized
Maximum A Posteriori (MMAP) choice and {ti} according
to a Maximum A Posteriori choice. The second loop con-
sists in a MCMC algorithm and estimates the {mi} and {zi}
parameters based on Expectation A Posteriori (EAP) choice.

4.2. First loop - RJMCMC algorithm

The first loop consists in a model choice algorithm. Each iter-
ation is constituted of two parts. The first part is the sampling
of the model with the RJMCMC algorithm. The evolution
of the model order is very close from the Single-Most Likely
Replacement algorithm described by Idier [15]. It consists in
proposing the addition or the suppression of an adsorption. If
a new adsorption is proposed, the new adsorption time, the

3
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mass of the molecule and the position of adsorption are sam-
pled according to their a priori distributions. If a suppression
is proposed, the adsorption number (the i index) is uniformly
chosen. This procedure is expressed as a derivation of the
Green algorithm [14] to compute the acceptance probability.

The second part is the sampling of the parameters within
the model according to the MCMC principle. π is sampled
with its conditional posterior probability which is a Beta dis-
tribution. Each {ti} are sampled with a uniform random walk
(one step forward or backward move), each {mi} and {zi}
are sampled with a normal random walk (with standard devi-
ations respectively δm and δz).

This algorithm is computed for Ni1 iterations. After this,
the most often sampled model N̂ from iteration B1 + 1 to
Ni1 (the first B1 values are discarded) is chosen. The N̂ most
often sampled adsorption times are chosen as {t̂i} estimation.

4.3. Second loop - MCMC algorithm

The second loop consists in a MCMC algorithm, correspond-
ing to the second part of the RJMCMC algorithm. Neverthe-
less, we do not need to sample π since N̂ is chosen. We also
do not sample {ti} to prevent label switching. Indeed, if two
{ti} are switching, the corresponding masses and positions
can also switch. Each {mi} and each {zi} are sampled as
described previously with a normal random walk.

This algorithm is computed for Ni2 iterations. Then, the
masses and the positions are estimated with:

m̂i =

Ni2∑
l=B2+1

m
(l)
i

Ni2 −B2
ẑi =

Ni2∑
l=B2+1

z
(l)
i

Ni2 −B2
(6)

In these equations, B2 is the number of initial discarded
values, m(l)

i and z(l)i are respectively the Markov chains of
the i-th estimated mass and the i-th estimated position.

5. RESULTS

5.1. Results on experimental data

Our algorithm is tested on experimental data acquired at CEA
Grenoble. These data were acquired with the previously de-
scribed NEMS sensor, inserted into a low-pressure chamber
where tantalum nano-clusters were projected onto the NEMS
surface. A time-of-flight mass spectrometer gave us the diam-
eter spectrum of these nano-aggregates. The mass spectrum
was centred on 6.5 nm diameter. We consider an observed
signal g of 5000 samples, for a 500 Hz sampling frequency.

With the prior parameters and the algorithm parameters
given in Table 1, the algorithm estimates the frequency shifts
given in Figure 3 (represented by vertical arrows). All vis-
ible frequency shifts were estimated. We also compute the
diameter d of every detected nano-clusters, given in Table 2.
The estimated diameters mean is 6.53 nm, which is consistent
with the mass spectrum of the analysed nano-clusters.

km θm aπ bπ Ni1 Ni2 B1 B2 δm δz
2 1000 1 5000 10000 8000 50 0.1

Table 1. Parameters used for experimental data processing
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Fig. 3. Estimation results on an experimental signal

Time 1274 2828 3061 3748 4178 4588
d (nm) 6.26 6.78 5.88 6.58 6.90 6.80

Table 2. Table of estimated diameters on experimental data

5.2. Results on simulated data

To quantify more precisely the performances of our algorithm
in term of detection capability and mass quantification, and
especially to process noisier data, we propose to work on sim-
ulated data. The data are simulated using the model described
in the section 2.2. We generate signals with 10 adsorbed
molecules on 1000 samples, which is a higher counting-rate
than the experimental one. The mass of molecules are sam-
pled with a normal prior centred on M0 with a standard devi-
ation of M0

20 . The positions and the adsorption times are uni-
formly sampled. We generate data for numerous signal levels.
The noise model and the standard deviation values σ1 and σ2
used are the same as in section 3.3. We define the Maximal
Signal to Noise Ratio (MSNR) as MSNR =M0

α1+α2

σ1+σ2
.

The prior parameters and the algorithm parameters are set
to values given in Table 3. The method is compared with
two algorithms based on the deconvolution of the two signals
separately with the pseudo-inverse method. The first algo-
rithm, named averaged pseudo-inverse, consists in a decon-
volution step, an averaging of these two deconvoluted signals
and a thresholding step. The second one, named conservative
pseudo-inverse, consists in a deconvolution step, a threshold-
ing of both deconvoluted signal and an ”AND” operation.

We compute the specificity of the algorithm (one minus
the ratio of wrong detections over non-events number) and
the sensitivity (ratio of true detections over events number).
The thresholds in pseudo-inverse methods are designed to get
a 99.9% specificity since our algorithm presents a minimal
99.9% specificity for all studied MSNR. The sensitivity re-
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sults are given in Figure 4. We can see that our method out-
performs pseudo-inverse ones.

km θm aπ bπ Ni1 Ni2 B1 B2 δm δz
2 200 1 100 10000 8000 50 0.1

Table 3. Parameters used for simulated data processing
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Fig. 4. Evolution of sensitivity on simulated data

We also compute the evolution of the Coefficient of Vari-
ation of the Root Mean Square Deviation (CVRMSD) on mass
estimation with the MSNR, given in Table 4. The CVRMSD de-
creases with the mass of molecules and remains below 20%
until the nominal mass of 421 kDa.

MSNR (dB) 35 30 25 20 15 10
Mass (kDa) 1332 749 421 236 133 75
CVRMSD(%) 15.5 16.7 18.8 41.5 85.2 99.5

Table 4. Results of mass quantification on simulated data

6. CONCLUSION

In this article, we sum up the principle of NEMS Mass Spec-
trometry. We express the forward model since we model
the acquisition system. The two specific points here are im-
pulse deconvolution on several signals simultaneously and the
inversion of a non-linear function. We compute the inver-
sion with the Bayesian framework associated with an hybrid
RJMCMC-MCMC algorithm. We test our method on exper-
imental and simulated data. The results show that our algo-
rithm outperforms a classical deconvolution method.
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