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ABSTRACT

In this paper, we consider the problem of non-orthogonal joint
diagonalization of a set of complex symmetric matrices. This
appears in many signal processing problems, especially in
source separation. We propose three new algorithms based
on LU decomposition of the matrix we are looking for and
based on a Jacobi like procedure. The algorithms are based on
a coupled and a decoupled parameter estimation. Numerical
simulations are provided to compare the performances with a
similar one existing in the real case and adapted to the com-
plex symmetric case. Finally, we propose a mixed algorithm
combining two proposed ones which allows more balanced
performances.

Index Terms— Non-Orthogonal Joint Diagonalization,
Source Separation, Complex Symmetric Matrix

1. INTRODUCTION

Joint Diagonalization of sets of matrices is an important issue
in blind signal processing and more particularly in source sep-
aration [1]-[12]. The unitary case has been first considered,
see [1, 2] for hermitian matrices and [3] for complex sym-
metric matrices. Nowadays the non-unitary case has become
important mainly because it allows to skip a first processing
step (whitening of observations in source separation) which
limits the performances in practical cases. Recently a number
of algorithms have been proposed [4]-[12]. Some of them are
based on a direct criterion or based on an inverse criterion or
even on a combined one. We consider the inverse criterion.

The complex symmetric matrix case is of importance due
to the non-circularity property that may appear in some wire-
less telecommunication applications [13]. For the joint diag-
onalization problem of complex symmetric matrices, we con-
sider a Jacobi like scheme for the minimization of the inverse
criterion. Our main purpose is to use an LU decomposition

The authors thank the Direction Générale de l’Armement for its financial
support.

on the searched separation matrix in order to avoid the criti-
cal problem of degenerate solutions as e.g. the estimation of
non invertible matrix.

The paper is organized as follows. First, we introduce
the joint diagonalization problem. Then we develop the Ja-
cobi like algorithms for non-orthogonal joint diagonalization
of complex symmetric matrices based on a LU decomposi-
tion. We propose an improvement by a combination of two
of these algorithms. Finally, by numerical simulations, we
compare the performances of each algorithm.

2. PROBLEM FORMULATION

We consider K (K ≥ 2) complex symmetric matrices, Mk,
k = 1, . . . ,K, defined as:

Mk = ADkA
T , (1)

where (·)T is the transposed operator. Throughout the paper,
we only consider the case of square matrices, all of them of
size N × N . Dk, k = 1, . . . ,K, are diagonal complex ma-
trices and A is complex invertible. Here A is the so-called
mixing matrix.

From the matrix set {Mk} the objective is to estimate
a complex separation matrix B (equal to the inverse of the
mixing matrix A up to the product of a diagonal matrix and
a permutation matrix) such that the matrices BMkB

T are
(approximately) jointly diagonal. The cost function used to
jointly diagonalize the Mk matrices is the inverse criterion
which is defined as:

J(B) =

K∑
k=1

||BMkB
T − Diag{BMkB

T }||2F , (2)

where Diag{·} is the diagonal matrix defined by the diagonal
of M and where || · ||F is the Frobenius norm. In order to
optimize this cost function we have to find the matrix B min-
imizing J(B) but avoiding the obvious solution B = 0. For
this purpose, we propose three Jacobi like algorithms based
on the LU decomposition.
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3. PROPOSED ALGORITHMS

All square matrices can be decomposed as DPLU, where D
is a diagonal matrix, P is a permutation matrix and L and U
are, respectively lower and upper triangular matrices with di-
agonal coefficients equal to 1. In the source separation prob-
lem, matrices D and P corresponds to classical indetermina-
cies and can thus be dropped. It then remains to determine
both triangular matrices L and U giving now the separating
matrix as B = LU. A great advantage of this parameteriza-
tion is that B will be an invertible matrix.

We consider three iterative processes for the estimation
of matrices L and U. In order to simplify this estimation,
we consider a Jacobi like procedure. This procedure consists
of decomposing a problem of size N × N as a product of
N(N−1)

2 sub-problems of “size” 2× 2 considering all couples
with the same indexes of rows and columns. For example, in
case N = 3, this can be written as:

B =

B1
11 B1

12 0
B1

21 B1
22 0

0 0 1

B2
11 0 B2

13

0 1 0
B2

31 0 B2
33

1 0 0
0 B3

22 B3
23

0 B3
32 B3

33

 ,

whereBq
ij with (i, j) ∈ {1, . . . , N}2 and q = 1, . . . , N(N−1)

2 ,
are complex coefficients.

Hence, from now, we only focus on the 2 × 2 case. Each
sub-matrices 2 × 2 will be written as the product of the fol-
lowing 2× 2 L and U matrices

L =

(
1 0
l 1

)
U =

(
1 u
0 1

)
(3)

where l and u are the two unknown complex parameters. We
develop two iterative ways for the estimation of L and U:

• The first way consists of estimating L and U all to-
gether, i.e. considering there is a unique matrix LU.
This is the so-called coupled method.

• The second way consists of estimating L and U one
after the other, i.e. fixing one of the two matrices in
order to compute the other one and vice versa. This is
the so-called decoupled method.

We can highlight that the Jacobi scheme minimizes suc-
cessively the N(N−1)

2 restricted 2 × 2 cases. Hence, the pro-
posed scheme does not minimize the full criterion J directly.
Computer simulations in section 4 will show the effectiveness
of the proposed approach.

3.1. The coupled estimation

3.1.1. Separation phase

In this first phase, the separation matrix B, in the 2× 2 case,
is defined as

B =

(
1 0
l 1

)(
1 u
0 1

)
=

(
1 u
l 1 + lu

)
. (4)

Let M′k, k = 1, . . . ,K, the matrices of size 2× 2 defined as

M′k = BMkB
T . (5)

By construction of the Mk matrices in (1), the M′k matrices
are symmetric too. Thus M ′k,21 = M ′k,12. Hence, the cost
function in (2), in the 2 × 2 case, named J2×2(B) can be
rewritten as:

J2×2(B) = 2

K∑
k=1

|M ′k,12|2. (6)

In using (5), we have M ′k,12 = cTk p with

ck =

Mk,11

Mk,12

Mk,22

 and p =

 l
1 + 2lu
u(1 + lu)

 . (7)

The cost function can be now written as the quadratic form:

J2×2(B) = 2 pH
K∑

k=1

c∗kc
T
k p, (8)

where (·)∗ is conjugate operator. Thus, the minimization of
J2×2(B) can be solved by finding the unit-norm minor eigen-
vector, noted e, of

∑K
k=1 c

∗
kc

T
k . Now we have to find the pa-

rameters of p in such a way that

e =
(
e1 e2 e3

)T
= αp, (9)

where α is a supplementary unknown complex parameter.
The parameters l, u and α are calculated by resolving the fol-
lowing non linear system of three equations derived from (9)

0 = e1u
2 − e2u+ e3

α = e2 − 2ue1

l =
e1
α
.

(10)

In this system, as the first equation is of the second or-
der, there are two solutions for u. We propose to choose the
one with the smallest magnitude. Indeed the cost function de-
pends, inter alia, on the magnitude of u, and so the smallest
the magnitude is more the cost function is minimized. Hence,
this choice yields a best possible minimization of J2×2(B).

3.1.2. Balancing phase

In order to improve the robustness of this iterative method
based on a minor eigenvector research, we have to pay atten-
tion that the separation matrix norm will not become too high.
That is why we propose to normalize B in using a postmulti-
plication by a diagonal weighted matrix defined as:

W =

(
w 0
0 w−1

)
, (11)
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where w is a complex parameter. This parameter is computed
by minimizing the norm of WB. Straightforward derivation
yields to:

w =
(|l|2 + |1 + lu|2)1/4

(1 + |u|2)1/4
. (12)

The resulting coupled LU algorithm named CLU is built
with the alternate scheme. This alternate strategy involves,
for each global sweep, to apply for each pair the first phase
and then second phase.

3.2. The decoupled estimation

In this second way, the separation matrix B is first imposed
equal to U. Then its optimal value is derived as above. After
B is imposed equal to L and its optimal value is also derived.
The main point is that it is not done all together, but succes-
sively. The main difference with [9] is that we restrict to the
2 × 2 case for the successive estimation of l and u, so we do
not minimize the global criterion but the 2× 2 corresponding
“sub” criterion.

3.2.1. The U part

By considering B = U =

(
1 u
0 1

)
, in (5) then the criterion

in (6), in the 2× 2 case, named J2×2 reads

J2×2(U) =

K∑
k=1

|Mk,12 + uMk,22|2. (13)

The optimal value for u minimizing J2×2(U) follows as

u = −
∑K

k=1Mk,12M
∗
k,22∑K

k=1 |Mk,22|2
. (14)

3.2.2. The L part

By considering B = L =

(
1 0
l 1

)
, in (5) then the criterion

J2×2 reads

J2×2(L) =

K∑
k=1

|Mk,12 + lMk,11|2. (15)

The optimal value for l minimizing J2×2(L) follows as

l = −
∑K

k=1Mk,12M
∗
k,11∑K

k=1 |Mk,11|2
. (16)

3.2.3. Two different strategies

This decoupled procedure can be built in two global optimiza-
tion strategies. One way consists of applying the U part first

for all pairs and after the L part for all pairs. This is the so-
called block strategy with the following acronym DLU1. The
second way is to do the same scheme as in the coupled pro-
cedure, i.e. for each fixed pairs, the 2 × 2 U part first and
the 2× 2 L part are derived and applied. This is the so-called
alternate strategy with the following acronym DLU2.

3.3. Mixed algorithm

As it will be shown in the computer simulation section 4.1,
on the first iterations (i.e. the sweeps of all pairs) DLU1 con-
vergence rate outperforms CLU one and inversely after few
iterations. So we propose a third algorithm that mixes both
previous algorithms in order to have the behaviour of DLU1
on the first iterations and then the CLU one. Let n0 ∈ N∗, this
mixed LU (MLU) algorithm consists in using DLU1 algo-
rithm for the first n0 iterations and then using CLU algorithm.
In the simulation results section we will test this algorithm
for different values of n0.

We can notice that all these proposed algorithms have
the same numerical complexity because of the algebraic cal-
culus of the parameters in the 2 × 2 case. Moreover, we can
highlight that the algorithms DLU1 and DLU2 are an im-
provement of the Afsari’s algorithm [9] and CLU algorithm
is an original one using LU parametrisation.

4. SIMULATION RESULTS

4.1. Algorithm comparisons

In order to evaluate the algorithm performances, we use the
performance index proposed in [2][11][12]. It compares the
global matrix S = BA = (Sij) to the product of a permuta-
tion matrix and a diagonal matrix as follow:

I(S) =
1

2N(N − 1)

(
N∑
i=1

(
N∑
j=1

|Sij |2

max` |Si`|2
− 1

)

+
N∑
j=1

(
N∑
i=1

|Sij |2

max` |S`j |2
− 1

))
.

(17)
This non-negative index is zero if S satisfies B = DPA−1.
We consider 25 complex symmetric matrices of size 5× 5 in
the two following cases:

• without noise

• with additive noise (which corresponds to a model error
on the decomposition of the observation matrices) of
the form Mk + t Nk where Nk, k = 1, . . . , 25, are
complex symmetric matrices of size N × N and t =
10−4.

The components of Mk, the diagonal components of Dk and
the components of A, follow a zero mean unit variance nor-
mal distribution for both their real part and their imaginary

3
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part. We do the same for the components of Nk.
Finally, we display the median value of the global criterion
J(B) (cf fig. 1) and the median value of the performance in-
dex I(S) (cf fig. 2 - fig.5) w.r.t. the number of iteration over
one hundred independent draws.

First, in figure 1, we can see that the algorithms CLU,
DLU1 and DLU2 converge for the global criterion (2) al-
thought they are built on the minimization of the correspond-
ing successive 2 × 2 problems. Moreover they have a better
accuracy than the algorithm LUJ1D.

Fig. 1. Algorithms convergence for the global criterion for 25
matrices of size 5× 5 in the noisy context (t = 10−4).

Now, we compare the results given by the proposed algo-
rithms CLU, DLU1, DLU2 in comparison to the result given
by a similar algorithm, denoted LUJ1D and proposed by Af-
sari in the real case [9]. Notice that it is adapted here to the
complex symmetric case.

Fig. 2. Algorithm comparisons for 25 matrices of size 5 × 5
in the noiseless context.

In the noiseless case, see figure 2, we verify that all algo-
rithms joint diagonalize all matrices Mk perfectly. All pro-

posed algorithms outperform the LUJ1D w.r.t. the conver-
gence speed. Moreover, until the fourth iteration DLU1 out-
performs the other algorithms and after CLU becomes better
than the others. Concerning DLU2 algorithm, it gives some
results similar but less efficient to DLU1.

Fig. 3. Algorithm comparisons for 25 matrices of size 5 × 5
in the noisy context (t = 10−4).

The case with noise (see figure 3) confirms that LUJ1D is
really less efficient than the others. Indeed the performance
index of CLU, DLU1 and DLU2 all converge to −43 dB
whereas LUJ1D converges around −42 dB. Concerning the
convergence speed, DLU1 is always more efficient during the
first four iterations compared to DLU2 and CLU. But from
the fifth iteration CLU becomes better than the others.

4.2. Combination of DLU1 and CLU algorithms

As we have seen previously DLU1 and CLU present a good
convergence speed but with a rather different behavior. In the
first iterations DLU1 is better than CLU and after it is the
contrary. That is why it is certainly interesting to propose a
basic combination of both algorithms. Using exactly the same
scenarios studied in paragraph 4.1, we test MLU algorithm
with different values of n0 (defined in paragraph 3.3) and we
compare it with CLU and DLU1. We point out that MLU
algorithm for n0 = 2 and n0 = 4 gives similar results to
those for n0 = 3 (the results are not plotted in figure 4 and
figure 5).

For n0 = 1, in the noiseless (figure 4) and the noisy con-
texts (figure 5), MLU has a better convergence speed than
CLU and DLU1.

We can notice that for n0 = 3, in the noisy case, the per-
formance index increases when MLU goes from the DLU1
to the CLU. This behavior is not acceptable and it never has
been noticed for n0 = 1. That is why we can retain MLU
algorithm with n0 = 1 as possibly the best combination of
CLU and DLU1 algorithms.
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Fig. 4. Performance of MLU algorithm versus n0 parameter
in the noiseless context.

Fig. 5. Performance of MLU algorithm versus n0 parameter
in the noisy context (t = 10−4).

5. CONCLUSION

For the non-orthogonal joint diagonalization of complex
symmetric matrices, we have proposed three new algorithms
based on LU decomposition of the separation matrix and
based on an Jacobi like procedure. Thus, all of them rely
on the analytic resolution of the elementary 2 × 2 problems.
Computer simulations have illustrated the good behavior of
proposed algorithms DLU1 and CLU with additive noise or
without. Finally, thanks to these results, we have proposed a
mixed algorithm (MLU) that takes advantages of both previ-
ous algorithms.
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