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ABSTRACT

We consider the problem of adaptive system identification
when the additive noise is colored, following an ARMA
model, and correlated with the input signal. By first assum-
ing exact knowledge of the ARMA coefficients we use the
Kalman filter theory to develop a prototype adaptive estima-
tion algorithm which is optimum in the case of uncorrelated
input and noise and outperforms, considerably, the classical
RLS. We then apply the prototype algorithm in the case of
correlated input and noise and show that it provides unbi-
ased estimates as opposed to classical RLS which is highly
biased. In the final part of our article, motivated by our
prototype algorithm, we propose an RLS-type algorithmic
variant which estimates the ARMA coefficients at the same
time with the system identification part. Simulations show
that this alternative version is only slightly inferior to the
prototype algorithm, which requires exact knowledge of the
ARMA model, inheriting all its notable advantages.

Index Terms— Adaptive system identification, Adaptive
filters, RLS

1. INTRODUCTION

There are several applications in practice where we encounter
the problem of system identification with colored additive
noise which is correlated with the input signal. A notable
example that clearly falls under this class is echo cancellation
in hearing-aids. In Fig. 1 we depict a graphical representation
of such a system where {sn} is the “additive noise” (in sys-
tem identification terminology) that represents the voice sig-
nal to be heard by the patient; {yn} is the signal measured at
the microphone containing the echo due to the feedback path
F (measured output); and finally {xn} is the signal coming
out from the loudspeaker (measured input) which, due to the
required processing by the hearing-aid DSP unit, is clearly
correlated with the signal {yn} and therefore with {sn}. The
goal is to identify F and subtract the contribution of the feed-
back path from the measured signal {yn}. This action is rep-
resented by the parallel branch involving the adaptive esti-

Fig. 1. Typical echo cancellation system for hearing aid
where input (loudspeaker signal) {xn} and noise (acoustic in-
put) {sn} are correlated due to DSP processing unit.

mate F̂n at time n of F .
We would like to point out that our focus in this article

is on RLS and RLS-type adaptive algorithms. Even though
these schemes are rarely used in real-time applications due
to their high computational complexity, the reason we present
them is because they can be used as prototypes for developing
simpler algorithmic versions (i.e. LMS and LMS-like alterna-
tives) that are more appropriate for this type of processing.

For the system identification problem depicted in Fig. 1 it
is already known that the classical RLS is optimum in esti-
mating F in the sense that, at every time instant, it possesses
the smallest mean square error among all adaptive algorithms,
provided that the noise signal {sn} is white and uncorrelated
with the input signal {xn} [1, Pages 485-490]. This inter-
esting optimality property can be established by applying the
Kalman filter theory, but for its validity it is also necessary
the impulse response F to be random with known mean and
covariance matrix.

Our primary goal in this work is to come up with an
RLS-like algorithm capable of identifying the FIR impulse
response F without bias for the case of an ARMA noise
signal {sn}, by not requiring exact knowledge of the ARMA
coefficients and no information about the dependency struc-
ture between input and noise. We must mention that in [2, 3]
a similar problem was considered, however our analysis is
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more rigorous than in these references. Specifically, by using
the Kalman filter theory, we prove optimality of a prototype
algorithmic scheme when {sn} possesses a known ARMA
structure and is uncorrelated with {xn}, while in [2, 3] such
optimality result is missing. Furthermore we prove, as in
[2, 3], that when {sn} and {xn} are correlated, our prototype
algorithm offers unbiased estimates and unlike the previous
references we provide formulas for the asymptotic estimation
error covariance matrix. Finally we develop an RLS-like al-
gorithm capable of identifying the FIR filter in parallel with
the ARMA model thus freeing us from any requirement of
exact knowledge of the noise dynamics. We demonstrate that
this algorithm is also asymptotically unbiased. Similar result
does not exist in [2, 3].

The rest of the paper is organized as follows: Section 2
provides the formulation of the problem we are interested in
under a general setup. In Section 3 we develop our adaptive
algorithms and demonstrate that they enjoy several desirable
characteristic properties. Finally, Section 4 contains our con-
clusions.

2. PROBLEM FORMULATION

Regarding notation, lower case letters denote scalars; upper
case vectors and upper case, bold face matrices. Consider the
following system

yn = Xt
nF + sn, (1)

where F is an unknown, time invariant FIR system of length
L; Xn = [xn, . . . , xn−L+1]

t with {xn} the measured input
signal; {yn} the measured output and, as we mentioned in the
Introduction, {sn} the additive noise. For {sn} we assume it
is described by an ARMA(K,M ) model of the form

sn = −a1sn−1 − · · · − aKsn−K
+ wn + b1wn−1 + · · ·+ bMwn−M (2)

where {wn} is an unknown white sequence with variance
σ2
w and K,M are known integers. We also assume that the

ARMA process is stable suggesting that the roots of A(z) =
1 + a1z

−1 + · · · + aKz
−K lie in the interior of the unit cir-

cle. For B(z) = 1 + b1z
−1 + · · ·+ bMz

−M , even though not
necessary, we also make the same assumption suggesting that
the filter B(z)

A(z) is minimum phase.
Assuming, without loss of generality, thatM = K−1 and

defining Sn = [sn, . . . , sn−K+1]t, we can use the standard
controllable canonical form and write (2) using state-space
equations as

Sn = ASn−1 + E1wn

sn = BtSn

where

A =


−a1 −a2 · · · −aK

1 0 · · · 0
...

. . . . . .
...

0 · · · 1 0

 ; B =


1
b1
...

bK−1

 ;

and Ek denotes a vector with all elements 0 except the kth
which is 1.

We can also define a state-space representation for the sys-
tem in (2) where the state represents the desired FIR impulse
response. Since the latter does not change in time the state
equation is simply Fn = IFn−1 (= F ) where I denotes the
identity matrix. Substituting sn from the state-space equation
in (1) and combining the two states Fn, Sn into a single state
[Fn;Sn] we can write (1) as the measurement equation of the
following state-space equation

[Fn;Sn] =

[
I 0
0 A

]
[Fn−1;Sn−1] + EL+1wn

yn = [Xn;B]t[Fn;Sn].

(3)

In the next section, we provide adaptive estimates for the state
process {[Fn;Sn]} by applying the Kalman filter theory. This
will give rise to efficient adaptive algorithms.

3. ADAPTIVE IDENTIFICATION ALGORITHMS

Suppose at each time instant n we are given the pair of obser-
vations (yn, xn) and we are interested in obtaining adaptive
estimates [F̂n; Ŝn] for the state vector [Fn;Sn]. As we men-
tioned, first we are going to develop a prototype algorithm
using the Kalman filter theory. This is the main focus of our
next subsection.

3.1. Optimum adaptation for uncorrelated input and
noise

Following the same idea that leads from Kalman filter to clas-
sical RLS, we first consider {sn} and {xn} as being uncorre-
lated retaining, however, the ARMA structure for {sn}. This
allows for the application of the Kalman filter theory to com-
pute, adaptively, the optimum estimate [F̂n; Ŝn] which mini-
mizes the mean square error at each time instant1. The equa-
tions for the optimum adaptation are given in Table I, where
σ2
w is the variance of the white process {wn}. The algorithm

is initialized with [F̂0; Ŝ0] containing the mean of F concate-
nated with a zero vector representing the mean of S0. Simi-
larly the error covariance matrix Σ0|0 is initialized as a block
diagonal where only the upper diagonal block is nonzero and
equal to the covariance matrix of the random vector F .

1If all processes are jointly Gaussian then the Kalman filter is optimum
in the sense that it minimizes the mean square error. When the processes are
not Gaussian then the Kalman filter is the best linear estimator.

2



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

Table I: Kalman Filter

From time n− 1: Σn−1|n−1, F̂n−1, Ŝn−1

At time n, measure xn, yn and update Σn|n, F̂n, Ŝn as follows:

Σn|n−1 =

[
I 0
0 A

]
Σn−1|n−1

[
I 0
0 At

]
+ σ2

wEL+1EtL+1

Kn =
Σn|n−1[Xn;B]

[Xn;B]tΣn|n−1[Xn;B]

Σn|n = (I−Kn[Xn;B]t)Σn|n−1

εn = yn − [Xn;B]t
[

I 0
0 A

]
[F̂n−1; Ŝn−1]

[F̂n; Ŝn] =

[
I 0
0 A

]
[F̂n−1; Ŝn−1] + εnKn

The Kalman filter adaptation computes the optimum esti-
mate for the whole state [F̂n; Ŝn]. From Kalman filter theory
we also know that any subset of the optimum estimator pro-
vides optimum estimates for the corresponding subset of the
state. Therefore if in [F̂n; Ŝn] we limit ourselves to the upper
part which is the estimate F̂n, then this constitutes the opti-
mum estimator for Fn and, hence, for F at time n. Conse-
quently, next, we present an algorithm that provides directly
the estimates F̂n, by isolating the upper part from [F̂n; Ŝn].
In order to be able to propose the desired algorithm we need
to introduce two new processes {un} and {ξn} by filtering
{xn} and {yn} respectively with the inverse of the filter that
generates the ARMA process {sn}. Specifically we define

un + Ū t
n−1B = xn + X̄t

n−1A

ξn + Ξ̄t
n−1B = yn + Ȳ t

n−1A.
(4)

where X̄n = [xn, . . . , xn−K+1]t, Ȳn = [yn, . . . , yn−K+1]t,
Ūn = [un, . . . , un−K+1]t, Ξ̄n = [ξn, . . . , ξn−K+1]t, A =
[a1, . . . , aK ] and B = [b1, . . . , bK ]. We also define Un =
[un, . . . , un−L+1]t. We then have the following theorem that
yields the optimum adaptive estimator.

Theorem 1. The adaptive identification algorithm that pro-
vides the optimum estimates of F at each time instant n has
the following form:

Table II: Prototype Algorithm

From time n− 1: Pn−1, F̂n−1

At time n: Measure xn, yn
Update impulse response estimate as follows:

un = −Ū t
n−1B + xn + X̄t

n−1A

ξn = −Ξ̄t
n−1B + yn + Ȳ t

n−1A

K̄n =
Pn−1Un

U t
nPn−1Un + 1

en = ξn − U t
nF̂n−1

F̂n = F̂n−1 + enK̄n

Pn =
Pn−1UnU

t
nPn−1

U t
nPn−1Un + 1

.

where F̂0 is initialized with the average of F and P0 with the
covariance matrix of F divided by σ2

w.

Proof. The proof of Theorem 1 can be found in [4].

The prototype adaptation has the extremely interesting
characteristic of being able to outperform, considerably, the
classical RLS where no inverse filtering is applied on the two
measured signals {xn} and {yn}. Actually the more colored
the noise sequence {sn} is, the more we gain in performance
when we apply the algorithm of Table II, instead of the classi-
cal RLS. Fig. 2 presents a typical example of the performance

Fig. 2. Mean square estimation error for conventional RLS
and our Prototype algorithm, when input and noise are uncor-
related.

of the two algorithms and, as we can observe, the algorithm
of Table II can have far superior performance. Of course one
can argue that this is in a sense expected since this algorithm
has a more complete prior information regarding the noise se-
quence {sn} (knows exactly the ARMA coefficients) which
is properly using to its advantage. However, in the last part of
this section we are going to introduce an alternative scheme
that requires the same prior knowledge as the classical RLS
and behaves very closely to this optimal algorithm, thus elim-
inating this last practical weakness. Before presenting this
interesting algorithmic variant, let us analyze the behavior
of the two algorithms (Prototype and Classical RLS) when
the noise sequence {sn} and the input sequence {xn} are
correlated.

3.2. Correlated input and noise

As we argued in the Introduction, the case of correlated noise
{sn} and input {xn} is a practically interesting problem since
several echo cancellation problems exhibit this type of corre-
lation between the two signals. To deal with this case one
could analyze the problem assuming some form of correla-
tion model between the two sequences {sn}, {xn} and pro-
duce, again, an optimal algorithm. However in order to free

3
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our analysis from any limitation imposed by such modeling,
we decided, simply, to apply the Prototype and the RLS algo-
rithm and analyze their convergence behavior. The reason we
avoided adopting any correlation modeling between {sn} and
{xn} is because in most practical systems the processing per-
formed by the DSP unit (see Fig. 1) is extremely complicated
and time varying, suggesting that our model will, most likely,
be inefficient and inaccurate. The only mild assumption we
impose regarding the correlation between the two sequences
is the following:

Assumption 1: At every time instant n, xn can be correlated
with wn−1, wn−2, . . . but is uncorrelated with wn, wn+1, . . ..

This is actually not a serious restriction since for the DSP unit
we assume causal processing which suggests that it needs at
least a unit delay to take the measurement yn and process it in
order to generate the sample xn. We have now the following
theorem that presents a very important property of our proto-
type algorithm and a serious weakness of classical RLS.

Theorem 2. Under Assumption 1, the prototype adaptation
depicted in Table II provides asymptotically unbiased esti-
mates of F in the sense that limn→∞ F̂n = F , almost surely,
while the classical RLS is biased.

Proof. The detailed proof of Theorem 2 is presented in [4]
along with analytic formulas for the bias of RLS and the
asymptotic estimation error covariance matrix of the proto-
type algorithm. The proof of unbiasedness can also be found
in [2, 3].

Theorem 2 proves that the prototype algorithmic scheme
continues to provide correct (unbiased) estimates as com-
pared to the classical RLS which is biased. Furthermore,
this desirable property is valid under the very mild restriction
imposed by Assumption 1 without the need to have an actual
model for the correlation between the two signals. Of course
in order for this property to hold under such general condi-
tion, we had to sacrifice the optimality this algorithm enjoys
in the uncorrelated noise/input case.

In Fig. 3 we present a typical example of the relative per-
formance of the two algorithms for correlated noise/input se-
quences. As we can see our prototype adaptation has a mean
square error that tends to 0, while the classical RLS, very
quickly, converges to the wrong value. It is therefore clear
that processing the two measured signals with the inverse fil-
ter, is crucial for enjoying the very important property of un-
biased estimates. We should mention that in most existing
hearing-aids the type of processing employed for echo can-
cellation produces biased estimates. As it turns out, this fact
is the source behind several artifacts that were observed and
demanded for special treatment with ad-hoc methods.

The prototype algorithm possesses notable advantages
compared to the classical RLS. However, as we pointed out,
these properties are attributed to the exact knowledge of the

Fig. 3. Mean square estimation error for conventional RLS
and our Prototype algorithm, when input and noise are corre-
lated.

ARMA model of the noise sequence {sn}. Of course, in
practice, such prior information is difficult to obtain, basi-
cally because {sn} is mostly time-varying (as in the case of
speech signals). In the next subsection we present a means
for dealing with this serious practical problem.

3.3. An RLS-like adaptive algorithm

In this subsection we develop a variant of the prototype algo-
rithm that does not require any prior knowledge of the ARMA
model since it is capable of adaptively estimating the ARMA
coefficients in parallel with the impulse response F . To pro-
duce the desired algorithm let us assume that F̂n is close to
the true F . This suggests that (see Fig. 1) en ≈ sn. In fact
en can be regarded as an efficient estimate ŝn of sn. We can
therefore write

en + Et
n−1A = ŵn + Ŵ t

n−1B, (5)

where En = [en, . . . , en−K+1]t, Ŵn = [ŵn, . . . , ŵn−K+1]t

and ŵn is an estimate of wn. Assuming at time n − 1 that
we have available estimates Ân−1, B̂n−1 we can execute the
adaptation depicted in Table II, using Ân−1, B̂n−1 in place of
the true values A,B. This will generate en. Furthermore,
assuming that at time n − 1 we also have En−1, Ŵn−1 we
can compute ŵn from (5) as

ŵn = en + Et
n−1Ân−1 − Ŵ t

n−1B̂n−1.

This equation allows for the parallel update of Ân, B̂n using
the classical RLS algorithm which, in combination with the
algorithm in Table II, constitutes our final scheme. The com-
plete adaptation is summarized in Table III.
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Table III: Proposed Algorithm

From time n− 1: Pn−1, F̂n−1,Qn−1, Ân−1, B̂n−1

At time n: Measure xn, yn
Update impulse response estimate as follows:

un = −Ū t
n−1B̂n−1 + xn + X̄t

n−1Ân−1

ξn = −Ξ̄t
n−1B̂n−1 + yn + Ȳ t

n−1Ân−1

K̄n =
Pn−1Un

U t
nPn−1Un + 1

en = ξn − U t
nF̂n−1

F̂n = F̂n−1 + enK̄n

Pn =
Pn−1UnU

t
nPn−1

U t
nPn−1Un + 1

Update ARMA-coefficient estimate as follows:

Gn =
Qn−1[En−1;−Ŵn−1]

[En−1;−Ŵn−1]tQn−1[En−1;−Ŵn−1] + 1

ŵn = en + Et
n−1Ân−1 − Ŵ t

n−1B̂n−1

[Ân; B̂n] = [Ân−1; B̂n−1] + ŵnGn

Qn =
Qn−1[En−1;−Ŵn−1][En−1;−Ŵn−1]tQn−1

[En−1;−Ŵn−1]tQn−1[En−1;−Ŵn−1] + 1

For this algorithm we have the following theorem that ad-
dresses its convergence properties.

Theorem 3. Under Assumption 1, the estimate F̂n of the pro-
posed algorithm converges, almost surely, to the true impulse
response F .

Proof. The proof can be found in [4] along with closed form
expressions for the asymptotic estimation error covariance
matrix of the algorithm.

In order to test the efficiency of the proposed algorithm,
we performed numerical simulations. We implemented a sys-
tem, as the one depicted in Fig. 1, with the unknown impulse

Fig. 4. Mean square estimation error for Prototype and Pro-
posed algorithm, when input and noise are correlated.

response F drawn from a distribution with zero mean and
large covariance matrix ΣF = γI with γ � 1. We se-
lected the length of the impulse response to be L = 8. For
the input signal {xn} we used i.i.d. Gaussian samples with
mean 0 and unit variance. For the noise sequence {sn} we
used an ARMA(2,2) model with the following coefficients:
a1 = 0.6, a2 = −0.3 and b1 = −1.79, b2 = 0.792 while
for the i.i.d. sequence {wn} we used wn−1 = xn in order to
generate dependency between the two processes and satisfy
Assumption 1.

We executed the two adaptations, namely the algorithm
of Table II which knows the exact ARMA coefficients and the
proposed appearing in Table III which estimates them. Fig. 4
depicts the corresponding relative performance. The curves
we present are averages of 100 independent runs. As we can
see, both algorithms have very similar performance with the
proposed adaptation being slightly inferior, since the extra es-
timation required for the ARMA model inflicts a small in-
crease in the final mean square error. Nevertheless the differ-
ence is not very notable and the two algorithms tend to have
very comparable behavior.

4. CONCLUSION

In this paper we have developed an adaptive system identifica-
tion algorithm for the case of additive colored noise which is
also correlated with the input signal. The proposed algorithm,
in parallel with system identification, performs an adaptive
ARMA model estimation for the additive noise process. This
fact increases significantly the overall convergence speed as
compared to the classical RLS, assuring at the same time that
the system identification part is unbiased. The latter property
is not enjoyed by the classical RLS which provides highly bi-
ased estimates. Even though the focus in the current work is
on RLS and RLS-like adaptations, the corresponding results
can be easily adjusted to accommodate simpler algorithms as
LMS and LMS-like alternatives that are more fitting for real-
time applications.
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