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ABSTRACT

We propose a new method to separate mass spectra into in-
dividual chemical compounds for explosives detection. The
conventional method based on probabilistic latent compo-
nent analysis (PLCA) is effective in many cases because the
method can solve the problems of non-negativity and non-
orthogonality by using sparsity of the domain of explosives
detection. However, multiple compounds tend to be merged
into a single basis component, and a single compound tends
to be split into multiple basis components in error because
the method does not model temporal structure of mass spec-
tra. In this paper, first, we introduce a separation method
based on shift-invariant PLCA (SIPLCA) in order to model
temporal structure. Next, in order to prevent overfitting, we
introduce an attenuation envelope such that it imposes a tem-
poral constraint by focusing on the fact that the intensity of
chemical compounds is attenuated with time after passing
through the detector. Experimental results indicate that the
proposed method outperforms the PLCA-based conventional
method and other simple SIPLCA-based methods.

Index Terms— Mass spectrometry, Blind source separa-
tion, Probabilistic latent component analysis (PLCA), Time-
shift invariance, Sparsity

1. INTRODUCTION

The threat of improvised explosive devices has become a se-
rious problem for all countries because the procedures and
recipes for making them are freely available on the Internet.
To prevent terrorist attacks, we have developed a walkthrough
portal explosives detector that consists of a high-throughput
vapor sampling portal, a high-sensitivity atmospheric pres-
sure chemical ionization source, and a high-selectivity lin-
ear ion trap mass spectrometer [1]. The mass spectrometer
measures the intensity corresponded to the number of ions for
each mass-to-charge ratio (m/z). The m/z series of the inten-
sity is called a mass spectrum. The detector observes the time
series of the mass spectra continuously, and it detects a pat-

tern of peaks of a explosive compound from the mass spectra
data.

In real environments such as stations, explosive com-
pounds, other chemical compounds, and the chemical back-
ground are mixed with each other in the mass spectra. It is
necessary to separate the mass spectra into individual com-
pounds. The system does not know either what kind of a
spectrum the individual compounds have or when the in-
dividual compounds are observed in advance, and so the
necessary task of the system is a blind source separation
(BSS) problem. There are many researches that employ
BSS for mass spectra separation, such as principal compo-
nent analysis (PCA) [2] and independent component analysis
(ICA) [3, 4]. Because PCA and ICA impose the orthogonal-
ity and the independence respectively without constraints of
non-negativity, these methods are not fit to mass spectrome-
try domain, and separation performance degrades. Recently,
there have been several researches that apply non-negative
matrix factorization (NMF) and probabilistic latent compo-
nent analysis (PLCA) [5] to the area of mass spectrometry
[6, 7, 8]. These approaches have the desirable feature that
the estimated components are guaranteed to be non-negative,
and so distortion is not caused by negative values. Further-
more, the PLCA-based conventional method [8] can solve the
uncertainty problem of the number of compounds by using
statistical knowledge as sparsity priors. The PLCA-based
conventional method is effective in many cases. However,
multiple compounds tend to be merged into a single basis
component, and a single compound tends to be split into mul-
tiple basis components in error because the method does not
model temporal structure of mass spectra.

In this paper, we propose a new mass spectra separa-
tion method for explosives detection. The proposed method
has two key features: First, in order to model the tempo-
ral structure, the method makes use of shift-invariant PLCA
(SIPLCA) [9]; second, the method imposes a temporal con-
straint by an attenuation model in order to prevent overfitting.
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2. PROBLEM STATEMENT

The input signal is the time series of mass spectra x(t,m),
where t is the index of time, and m is the index of m/z. T is
the number of time indices, and M is the number of indices
of m/z. x(t,m) is modeled as follows,

x(t,m) =
K∑

k=1

c(k|t)s(m|k), (1)

where k is the index of a basis component corresponded to
each compound, K is the number of the compounds in the air,
c(k|t) is the intensity of the k-th compound in t, and s(m|k) is
the time-invariant spectral basis component of the k-th com-
pound. We call c(k|t) a temporal activation.

In this paper, the goal is to estimate the unknown param-
eters c(k|t) and s(m|k) from the known parameters x(t,m).
This task is a blind source separation. In addition, we con-
sider the following three conditions of the explosives detec-
tion system. First, all the elements of c(k|t) and s(m|k) are
non-negative because mass spectra represent the number of
ions for all time and all m/z; second, we can not assume the
orthogonality between different basis components s(m|k) be-
cause multiple compounds are mixed into the same m/z in real
environments; third, the number of compounds in the air K
is unknown because suspected chemical compounds and the
chemical background change depending on the environment
at the time and place.

3. PLCA-BASED MASS SPECTRA SEPARATION

In this section, we explain about the PLCA-based conven-
tional mass spectra separation method [8]. The PLCA model
[5] considers that x(t,m) is proportional to the following
probability distribution:

x(t,m) ∝ P (t,m) = P (t)
K∑

k=1

P (k|t)P (m|k) (2)

PLCA estimates the unknown parameters P (k|t) and P (m|k)
from the input signal x(t,m). P (k|t) corresponds to c(k|t)
in (1), and we call P (k|t) a probabilistic temporal activation.
P (m|k) corresponds to s(m|k) in (1), and we call P (m|k)
a probabilistic spectral basis component. In order to solve
the underdetermined problem that K is unknown, the con-
ventional method makes use of sparsity in the temporal acti-
vation, sparsity in the spectral basis component, and sparsity
between the spectral basis components. These sparsity con-
straints modeled by entropic priors make it possible to esti-
mate P (k|t) and P (m|k) by EM (expectation-maximization)
algorithm. The conventional method can obtain the correct
solution in many cases. However, temporal structure of mass
spectra is not modeled, so multiple compounds tend to be
merged into a single basis component, and a single compound
tends to be split into multiple basis components in error.

WM M WMTwo dimensionalbasis P(m, τ | k) spectralbasisP(m | k) spectralbasisP(m | k)
Gamma distributionSIPLCA SIPLCA-EB SIPLCA-GEBTime (τ)m/z (m) Time (τ)W envelopebasisQ(τ | k)

Time (τ) envelopebasisQ(τ | k)
m/z (m) m/z (m)

Fig. 1. Basis components of each version of the proposed
method (SIPLCA, SIPLCA-EB, and SIPLCA-GEB).

4. PROPOSED METHOD

4.1. Mass spectra separation using shift-invariant PLCA

In this section, we introduce shift-invariant PLCA (SIPLCA)
[9] into the PLCA-based conventional method in order to
make it possible to model temporal structure of mass spec-
tra. While we think of the spectral basis component of each
compound as a one-dimensional probability distribution of
m/z in PLCA, in SIPLCA, we think of a basis component of
each compound as a two-dimensional probability distribution
P (m, τ |k) as Fig. 1 shows. Now, we define τ = 1, · · · ,W as
the time index in the basis component, where W is the frame
size of the basis component. In SIPLCA, we assume that the
input signal x(t,m) is generated by convolving P (m, τ |k)
over time as follows:

x(t,m) ∝ P (t,m)

=
∑
k

P (k)
∑
τ

P (m, τ |k)P (t− τ |k) (3)

=
∑
τ

P (t− τ)
∑
k

P (m, τ |k)P (k|t− τ) (4)

Smaragdis in [9] uses the formulation of (3), but (3) and (4)
are equivalent. Equation (4) can be also used without loss of
generality. In this paper, in order to keep consistency between
the conventional method and the proposed method, we use the
formulation of (4).

From (4), we can obtain SIPLCA algorithm (Algorithm
1) to estimate P (k|t) and P (m, τ |k). Similarly to the conven-
tional method [8], in order to concentrate a stationary chemi-
cal background on the first basis component, i.e., k = 1, we
set P (k|t) of k = 1 to a higher value than P (k|t) for all k ̸= 1
in (7). In the case of W = 1, SIPLCA is equivalent to the
conventional method.

In the conventional method [8], the number of the un-
known parameters, i.e., P (k|t) and P (m|k), is (KT +MK).
In contrast, in SIPLCA, the number of the unknown param-
eters, i.e., P (k|t) and P (m, τ |k), is (KT + MWK). Be-
cause SIPLCA has more unknown parameters than the con-
ventional method, SIPLCA is likely to suffer from overfit-
ting. In order to avoid overfitting, we introduce an attenuation
model into SIPLCA in the next subsection.
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Algorithm 1 SIPLCA
1. Initialization process

Set all the unknown parameters to random values.
2. Iteration process

Iterate the following E step and M step.
E step:

P (k, τ |t,m) =
P (t− τ)P (k|t− τ)P (m, τ |k)∑

k′,τ ′ P (t− τ ′)P (k′|t− τ ′)P (m, τ ′|k′)
,

(5)
M step:

ĉ(k|t) =
∑
m,τ

x(t+ τ,m)P (k, τ |t+ τ,m), (6)

P (k|t) =

{ 1
1+

∑
k′ ̸=1 g(βa,{ĉ(k′|t)}k)

if k = 1,
g(βa,ĉ(k|t))

1+
∑

k′ ̸=1 g(βa,{ĉ(k′|t)}k)
otherwise,

(7)

r(m, τ |k) =
∑
t

x(t,m)P (k, τ |t,m)−βc
∑
k′ ̸=k

P (m, τ |k′),

(8)
P (m, τ |k) = g(βb, {r(m, τ |k)}m,τ ), (9)

P (t) =

∑
k,τ,m x(t+ τ,m)P (k, τ |t+ τ,m)∑
t,k,τ,m x(t+ τ,m)P (k, τ |t+ τ,m)

, (10)

where g(β, {γi}i) is the entropic prior of Grindlay and Ellis
[10]: g(β, {γi}i) =

γi
β∑

i γi
β .

4.2. Attenuation model

In this section, we introduce an attenuation model in order to
avoid overfitting. Now, we assume that a person with a ex-
plosive compound passes through the detector. Within two or
three seconds, ions of the compound are measured, and peaks
rise rapidly in the mass spectrum. After the person goes away
from the detector, the intensity of the peaks decreases con-
tinuously and slowly. The intensity of P (m, τ |k) changes
largely depending on τ , but the spectral shape of P (m, τ |k)
does not change largely depending on τ . Thus, in the appli-
cation of explosives detection, we can assume that P (m, τ |k)
can be decomposed into a spectral basis component P (m|k)
and a envelope basis component Q(τ |k), which are mutually
independent. We represent the envelope basis component as
Q(τ |k), not P (τ |k) in order to distinguish the envelope basis
component not depending on t with the temporal activation
P (k|t) or P (t|k) depending on t. By this assumption, we
obtain the following equation:

P (m, τ |k) = P (m|k)Q(τ |k) (11)

Therefore, we can also decompose the estimation process of
P (m, τ |k) in SIPLCA into the estimation process of P (m|k)
and that of Q(τ |k). In the estimation process of P (m|k), the
sparsity in the spectral basis component can be used similarly

Algorithm 2 SIPLCA-EB
In PLCA, replace (8) (9) with the following equations:

ŝ(m|k) =
∑
t

x(t,m)P (k, τ |t,m)− βc
∑
k′ ̸=k

P (m|k′),

(12)
P (m|k) = g(βb, ŝ(m|k)), (13)

Q(τ |k) =
∑

t,m x(t,m)P (k, τ |t,m)∑
τ ′,t,m x(t,m)P (k, τ ′|t,m)

. (14)

Compute (11).

Algorithm 3 SIPLCA-GEB
In SIPLCA-EB, replace (14) with the following equation:

Q(τ |k) =
{

1
W if k = 1,
G(τ ; θ, ϕ) otherwise. (15)

to the conventional method [8]. However, it is not obvious
that an sparsity constraint is effective in the estimation pro-
cess of Q(τ |k). By considering these facts, we can obtain
SIPLCA with an Envelope Basis (SIPLCA-EB) algorithm
(Algorithm 2). As Fig. 1 shows, we can think that SIPLCA-
EB has two kinds of the basis components, i.e., the spectral
basis component P (m|k) and the envelope basis component
Q(τ |k).

In addition, in order to enhance robustness, we impose a
constraint the envelope basis component Q(τ |k). We focus on
the fact that the intensity of chemical compounds is attenuated
with time after passing through the detector. As explained
above, Q(τ |k) rises rapidly first, and then it decreases contin-
uously and slowly. In order to model such temporal structure
of attenuation, we approximate Q(τ |k) by the gamma distri-
bution G(τ ; θ, ϕ) = ϕθ

Γ(θ)τ
θ−1e−ϕτ , where Γ(θ) is the gamma

function, and both θ and ϕ are the parameters of the gamma
function. The attenuation curves of different compounds are
similar to each other empirically, and so we assume that both
θ and ϕ are constant, and they do not depend on compounds.
Therefore, we can achieve SIPLCA with an gamma Envelope
Basis (SIPLCA-GEB) algorithm (Algorithm 3). In (15), only
for k = 1, Q(τ |k) is set to the uniform distribution in order
to represent the fact that the intensity of the chemical back-
ground does not change in a short time. As Fig. 1 shows, we
can think that SIPLCA-GEB has both the spectral basis com-
ponent P (m|k) and the envelope basis component Q(τ |k)
similarly to SIPLCA-EB, where Q(τ |k) is defined by the
gamma distribution. After the algorithm converges, finally,
we can compute an estimate ĉ(k|t) of c(k|t) from (6), and we
can also compute an estimate ŝ(m|k) of s(m|k) from (12).
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Fig. 2. Explosives detector.

(a) Mass spectra x(t,m). X and Y axis show t and
m/z .
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(b) Chromatogram (time profile) of around m/z 59. X
and Y axis show t and the integrated intensity

I(t) =
∑

m∈[m/z 58, m/z 60] x(t,m).

Fig. 3. Input signal.

5. EXPERIMENTAL RESULTS

We evaluated the separation performance of the proposed
method. We used the device of the walk-through portal ex-
plosives detector [1] to record the input mass spectra. Four
of the authors developed a prototype device as supported by
Ministry of Education, Culture, Sports, Science and Technol-
ogy, Japan for three years since 2007. Based on this prototype
device, the device of this experiment was developed. Figure
2 shows a model of the device. We recorded the mass spec-
tra in a real station to measure the chemical background of
real environments. We used 3500 mass spectra of about five
minutes from the whole recorded data; i.e., T = 3500, and
the number of indices of m/z, M was 512. Figure 3 (a) shows
the input mass spectra, and Fig. 3 (b) is the chromatogram
(time profile) of around m/z 59. The chemical background
components have stationary peaks at m/z 59, m/z 62 and m/z
75, i.e., k = 1 (Fig. 3 (a)). In this experiment, an experi-
menter passed through the device with Compound 1 (m/z 59),
i.e., k = 2, four times in the former half of the time, and with
Compound 2 (m/z 59, m/z 62, m/z 76 and m/z 77), i.e., k = 3,
five times in the latter half of the time. As Fig. 3 (b) shows,
the fourth peak of Compound 1 (t = 1600) was small and it
had the same level as those of when Compound 2 was passed
(e.g., t = 1950).
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Fig. 4. Estimates for Compound 1 (k = 2, black) and Com-
pound 2 (k = 3, red).

We applied SIPLCA, SIPLCA-EB, and SIPLCA-GEB
described in Section 4. In the case of W = 1, SIPLCA is
equivalent to the PLCA-based conventional method [8]. In
the estimation process, all the unknown parameters were ini-
tialized by random values. On each condition, the estimation
process was run twenty times. We set the number of basis
components K in the estimation process at eight. βa was
1.01, βb was 1.005, βc was 0.5, θ was 2.5, and ϕ was 0.3.
The measurements were SNRk,i,j as follows:

SNRk,i,j = 10 log10
maxt∈Ak,i

|ĉ(k|t)j |√
1

|Nk|
∑

t∈Nk
|ĉ(k|t)j |2

[dB] , (16)

where Ak,i was the area around the i-th time when the k-
th compound is passed through the device, Nk is the non-
active time area; i.e., Nk=2 was [2000, 3500], and Nk=3 was
[0, 1500], and j is the index of executions. Next, we defined
SNR as an ensemble mean over k, i, and j. In the case of the
arithmetic mean, a peak SNRk,i,j of which will be extremely
high tends to cause SNR to be higher excessively. In order to
make much account of worse SNRk,i,j , we defined SNR as
the harmonic mean of SNRk,i,j over k, i, and j:

SNR =

 ∑
k=2,3

∑
i,j

1

SNRk,i,j


−1

(17)

Figure 4 shows estimates of the temporal activations
P (k|t) and estimates of the spectral basis components P (m|k)
respectively. As these results, the proposed method estimated
both the temporal activations and the spectral basis com-
ponents correctly. As Fig. 5 shows, the longer the frame
size W is, mostly the higher the separation performance is.
The separation performances of all the versions of the pro-
posed method (SIPLCA, SIPLCA-EB and SIPLCA-GEB)
of W = 20 were higher than that of the conventional method
[8] (SIPLCA of W = 1). These results indicate that it is
effective to model the temporal structure by SIPLCA in the
proposed method. In the cases that the range of W is 1 to 5,
the separation performances of each version are not signifi-
cantly different. However, when W was set to be 20, SNR of
SIPLCA-GEB is higher than those of the other versions at
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Fig. 5. SNR for each method. X and Y show the frame size of
the basis component W and SNR [dB]. Error bars represent
95% confidence intervals.
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Fig. 6. Splitted envelope basis components in the case of
SIPLCA-EB and W = 20. X and Y show τ and Q(τ |k).

about 4dB. These results indicate that SIPLCA and SIPLCA-
EB tend to suffer from overfitting, and that SIPLCA-GEB
can prevent overfitting successfully by using the attenuation
model. Actually, in the case of SIPLCA-EB, as Fig. 6 shows,
both of the two compounds were split into two basis compo-
nents respectively. The envelope basis components did not
follow the attenuation model described in Section 4.2, i.e.,
some envelope basis components did not rise rapidly, and
other envelope basis components were not continuous. It is
clear that the envelope basis components were not estimated
correctly. These results indicate that SIPLCA-EB suffered
from overfitting.

6. CONCLUSION

We proposed a new method to separate mass spectra into in-
dividual chemical compounds for explosives detection. In or-
der to model temporal structure, the proposed method makes
use of SIPLCA. Moreover, in order to prevent overfitting, by
focusing on temporal attenuation of chemical compounds, we
introduced an attenuation envelope such that it imposes a tem-
poral constraint into SIPLCA by focusing on the fact that the
intensity of chemical compounds is attenuated with time after
passing through the detector. In the experiment using the data
in a real environment, it was shown that the proposed method
(SIPLCA-GEB) outperforms the PLCA-based conventional

method and other simple SIPLCA-based methods (SIPLCA
and SIPLCA-EB).
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