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ABSTRACT

This paper investigates the discrimination between Photo-
graphic Images (PIM) and Computer Generated (CG) im-
ages. The proposed method exploits traces of Color Filter
Array (CFA) interpolation, present in PIM images, together
with the use of hypothesis testing theory. By using the Like-
lihood Ratio Test (LRT), the method proposed to distinguish
PIM from CG images warrants a prescribed False Alarm Rate
(FAR) and achieves the maximal detection power. Experi-
mental results show the efficiency of the proposed method-
ology and the high robustness with respect to anti-forensic
techniques.

Index Terms— CG, PIM, image forensics, hypothesis
testing, linear parametric model, nuisance parameters.

1. INTRODUCTION AND CONTRIBUTIONS

Digital image forensics is a new technique for distinguishing
a real image from a faked one. Different from digital image
watermarking, image forensics judges images without imbed-
ding any information previously for assisting authentication.
To distinguish a photographic image (PIM) from a computer
generated (CG) one is a research subfield of digital image
forensics on which this paper focuses.

Driven by the pioneer work [1], most of the latest methods
proposed exploits high order statistics and/or physical fea-
tures to distinguish PIM from CG using supervised learning
method (such as Support Vector Machine, SVM). Although
those methods can achieve high detection accuracy, super-
vised statistical learning is time-consuming. In addition, sev-
eral problems such as the robustness to training and testing
set mismatch and the establishment of detection performance
(false-alarm and missed-detection) remain open.

Note that PIM and CG images fundamentally differ as the
formers are obtained from a complex imaging process, see
Figure 1, while the latters are generated by a software, not
by a camera. In [2], it is proposed to exploit the features of
Color Filter Array (CFA) to detect CG images. Estimating the
CFA pattern is also an effective approach to authenticate PIM
images under some restrictive conditions, see [3].

Fig. 1: Illustration of an imaging process in digital cameras.

Fig. 2: Bayer Model.

Figure 1 illustrates the imaging process of digital still cam-
eras. Photons radiating from an object go though the optical
system. Then, the CFA filters the light spectrum so that each
pixel records only one color channel (red, green, or blue) ;
the two missing color channels are padded by color interpola-
tion. Finally, a natural image is generated after several image
post-processes such as white balance and gamma correction.
In [4], the statistical features resulting from the imaging pro-
cess are used for differentiating PIM from CG images.

Figure 2 shows the most commonly found CFA pattern re-
ferred to as Bayer. Based on the feature of Bayer model, PIM
and CG images can be differentiated by the peak value in the
frequency domain which is described specifically in Section 2
and in [5]. For a large number of PIM images the peak van-
ishes, hence this hardly permits the distinguishing from CG
images. Thus, an improvement of the method proposed in [5]
is needed.

This paper improves the Gallagher’s method by two
means. First, it is proposed to use the variance in the fre-
quency domain on the assumption that the post-acquisition
processes reduce the variance. Second, a linear parametric
model is used to deal with nuisance parameters and based
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on the residual noise vector, a hypothesis testing model is
established. Experimental results show the efficiency and the
robustness compared to the algorithm proposed in [5].

This paper is organized as follows. Section 2 recalls the
method proposed by Gallagher in [5]. Section 3 presents the
proposed linear parametric model used to deal with nuisance
parameters. The Likelihood Ratio Test (LRT) is established in
Section 4. Numerical experiments are presented in Section 5
and, finally, Section 6 concludes this paper.

2. OUTLINE OF GALLAGHER’S METHOD

In [5], Gallagher proposed to identify CG images by detecting
the peak value of the image in the frequency domain. The spe-
cific algorithm is summarized below. Let us denote I(x, y, c)
the pixels intensity of a given image with c = {r, g, b} the
color channel and (x, y) the pixel position. First, to avoid dis-
turbances from low frequencies, I(x, y, g) is filtered by the
following high-pass filter H(x, y).

H(x, y) =
1

4

0 1 0
1 −1 1
0 1 0


Note that in Gallagher’s Method [5] only the green channel is
used because it carries more information, due to the specific
Bayer’s CFA pattern illustrated in Figure 2, but an extension
to other channels is straightforward. Then, the mean of all
diagonal values, from the filtered image, are calculated to ob-
tain a vector denoted d = (d1, . . . , dN )T . Here n is the index
number of the diagonal, N is the total number of diagonal
and MT is the transpose of matrix M. Finally, it is proposed
in [5] to use the frequential representation of d, denoted D
and formally defined as follows:

D= |DFT (d)| with dn=N−1
n

∑
x+y=n

|H ∗ I(x, y, g)| (1)

∀n ∈ {1, . . . , N}. Here DFT [·] represents the calculation of
DFT andNn is the total number of pixels on the nth diagonal.

Some examples of vectors D, obtained from Gallagher’s
described in (1), are given in Figure 3. Roughly speaking, the
very simple test proposed in [5] consists in declaring a given
image as a PIM if a peak occurs at D(N/2). It is obvious that
images 3 (a), 3 (b) and 3 (d) can be discriminated efficiently.
On the opposite, image 3 (c) is likely to be detected as a CG
because it has no peak. In fact, there is a large number of
PIM images without peak, see Figure 3(g), and thus, that may
be wrongly detected as CG images by Gallagher’s method [5].
Consequently, for reliability and efficiency purposes, it is nec-
essary to improve the detection scheme proposed in [5].

Note that the peak value is not the only characteristic that
distinguishes PIM from CG images. For almost every PIM
image, see Figure 3 (e) and 3 (g), the noise present in vector D
has a much smaller variance than for CG images, see Figure 3.
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Fig. 3: PIM (a)-(c) and CG (b)-(d) images together with their
diagonal mean spectrum, (e)-(g) and (f)-(h) respectively.

In the present paper it is proposed to use this property of noise
variance to distinguish PIM from CG images.

3. DEALING WITH NUISANCE PARAMETERS

In this paper, a linear parametric model is proposed to deal
with diagonal mean spectrum D. To this end, D is splitted
into K nonoverlapping vectors, denoted y1, . . . ,yK , of m
samples, see [6]. Let us define

yk ∼ N (µk, σ
2Im) = µk + ξk. (2)

where µk = (µk,1, . . . , µk,m)T of expectations, ξk is the re-
alization of a Gaussian vector with variance σ2Im and Im the
identity matrix of size m×m. Hence, the problem of distin-
guishing PIM from CG images can be formulated as a choice
between the following hypotheses:{
H0 =

{
yk∼N (µk, σ

2
0Im),∀k = (1, ...,K), σ0≤σ

}
H1 =

{
yk∼N (µk, σ

2
1Im),∀k = (1, ...,K), σ1>σ

}
(3)

where σ2
0 and σ2

1 respectively represent the variance under
each hypothesis H0 = {the image is PIM} and H1 = {the
image is CG} and σ is the threshold. Obviously, the expec-
tation µk is the nuisance parameter without any interest to
distinguish PIM from CG images.

Furthermore, yk can be described with the following lin-
ear parametric model

µk = Axk. (4)

where A is a known full rank matrix of size m × n, with
m > n, and xk is a n× 1 vector of parameters describing the
expectation of yk.

The idea of using such a linear parametric model is that
it allows an easy elimination of nuisance parameter µk which
can be used in a hypothesis test using invariance theory [7,
chap.6]. To apply this theory, let us define C (A) the column
space spanned by A, with dim (C (A)) = rank(A) = n

and C (A)
⊥ its orthogonal complement, sometimes referred

2
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Fig. 4: PIM (a) and CG (b) images with their diagonal mean
spectrum, estimated expectation and residual noises (c)-(d).

to as the “parity space”, with dim
(
C (A)

⊥
)

= m− n. The
projection of observation vector yk onto the parity space is
obtained by nk = Wyk where the matrix W verifies, among
others, the following useful properties:

WA = 0 and WWT = Im−n. (5)

Hence, by using the definitions of hypotheses (3), the projec-
tion of observation vector yk onto the parity space C (A)

⊥

yields: nk = Wyk = Wξk ∼ N (0, σiIm−n) with i =
{0, 1} depending on the hypothesis.

Note that the use of projection matrix W can be replaced
by using the Maximum Likelihood Estimation (MLE). By re-
jecting the nuisance parameter, let us define the estimation of
nk as

n̂k = yk − ŷk = P⊥Ayk with P⊥A = Im −A(ATA)−1AT

(6)
In fact, a straightforward calculation, using the properties (5),
shows that :∥∥P⊥Ayk

∥∥2

2
= yT

kW
TWWTWyk =

∥∥Wyk
∥∥2

2
.

For clarity, in the present paper the matrix W is used in all
calculus while matrix P⊥A is used for illustrations and figures,
see Figure 4, to keep the same number of observations.

Note that in the present paper, the chosen linear paramet-
ric model is an algebraic polynomial of degree n − 1; this
yields the following matrix A:

A =


1 1 1 . . . . . . 1 1
1 2 4 . . . . . . 2n−2 2n−1

...
...

...
. . . . . .

...
...

1 m m2 . . . . . . mn−2 mn−1


In addition, as detailed in Section 5, it has been chosen to
remove the few first and last samples from vector D as well
as few samples around the N/2.

4. LIKELIHOOD RATIO TEST PERFORMANCES

By using a linear parametric model, as described in the
methodology presented in Section 3, the problem of detecting
PIM and CG images can be formulated as follows:{
H0 ={nk∼ N (0, σ2

0Im−n),∀k=(1, ...,K), σ0≤σ?}
H1 ={nk∼ N (0, σ2

1Im−n),∀k=(1, ...,K), σ1>σ
?}

(7)
For solving statistical detection problem such as (7), it follows
from the Neyman-Pearson lemma [7, Theorem 3.2.1] that the
Likelihood Ratio Test (LRT) is optimal in the sense described
below. For definition, let

Kα =

{
δ : sup

σ2
0≤σ?

P0[δ(D) = H1] ≤ α

}
(8)

be the class of tests, solving problem (7), with an upper-
bounded false-alarm probability α. Here Pj [·] is the probabil-
ity under Hj , j ∈ {0, 1}. Among all the tests in Kα the LRT
is the most powerful test, it maximizes the detection power

βδ = P1[δ(D) = H1]. (9)

From the statistical independence of vectors yk, the LRT
is given by the following decision rule:

δ(D) =

{
H0 if Λ(D) =

∑K
k=1 Λ(yk) ≤ τα

H1 if Λ(D) =
∑K
k=1 Λ(yk) > τα

(10)

where the decision threshold τα is the solution of equation
supσ2

0≤σ? P0[Λ(D) > τα] = α to guarantee that δ(D) ∈
Kα. From the model of tested hypotheses, a straightforward
calculation shows that the Likelihood Ratio (LR) Λ(yk) is
given by

Λ(yk) = ‖nk‖22
Finally, from the statistical distribution of noise residuals nk,
and from the properties of Gaussian random variables, one
immediately obtains that under hypothesisHi, i = {0; 1}:

1
σ2
i
‖nk‖22 ∼ χ2

m−n
⇔ Λ(yk) = ‖nk‖22 ∼ Γ(m−n2 , 2σ2

i )

where Γ(k, θ) represents the Gamma distribution with a shape
parameter k and a scale parameter θ. Subsequently, it follows
from the stability under summation of Gamma random vari-
ables, that the statistical distribution of the LR Λ(D) is given
under hypothesisHi, i = {0; 1} by:

Λ(D) ∼ Γ

(
K(m− n)

2
, 2σ2

i

)
(11)

It is thus immediate to establish the statistical properties of
the proposed test (11) which are given in the following the-
orems; for clarity, FΓ(·) and F−1

Γ (·) represent the Gamma
cumulative distribution function and its inverse respectively.
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(a) Detection power as a function of FAR α (ROC curve).

1.4 1.5 1.6 1.7
0

0.5

1

σ2
1

po
w

er
β
δ

Empirical power

Theoretical power

(b) Detection power as a function of the variance σ2
1 .

Fig. 5: Comparison between theoretically established and
empirically obtained performance of the proposed test (10).

Theorem 1. Assume that the model hypothesis (3) holds, then
for any α ∈ (0; 1) the decision threshold:

τα = F−1
Γ

(
1− α;

K(m− n)

2
, 2σ2

0

)
(12)

guarantees that the LRT δ (10) is in the class Kα.

Theorem 2. Assume that the model hypothesis (3) holds, for
any decision threshold τα ∈ R, the power function associated
with the test δ (10) is given by

βδ = 1− FΓ

(
τα;

K(m− n)

2
, 2σ2

1

)
(13)

5. NUMERICAL RESULTS

To verify the sharpness of the theoretically established re-
sults, a Monte-Carlo simulation is performed. Prior to our
experiments, it is proposed to use an image database con-
taining 300 PIM images (with 150 images from Nikon D70
and 150 images from Canon 10D) from Columbia’s AD-
VENT dataset [8] and 300 CG images downloaded from
www.pandromeda.com. All these 600 images are cropped to
reduce their size to 700×400 pixels and finally saved as Jpeg
format with the quality factor 85.

The parametric linear model (2) is defined by a polyno-
mial order n−1 = 4 and the size of vector yk is set tom = 64

samples. Note that to avoid dealing with different variance,
possibly non-uniform, the first, last and middle samples are
excluded from analysis. To this end, it is proposed in practice
not to consider the first, y1, the last, yK , and the two middle
vectors, yK/2 and , yK/2+1. From the remaining sample, the
variance of D is calculated using nk in each image. Two sets
containing 10000 vectors of 768 samples are randomly gen-
erated with zero mean and variance σ2

0 = 1.39, to simulate
residual noises from PIM images, or hypothesisH0, and with
variance σ2

1 = 1.80 to simulate CG images, hypothesis H1.
The detection performances obtained with the proposed test
are illustrated in Figure 5 (a); the Receiver Operating Char-
acteristic (ROC), that is the detection power βδ as a function
of false-alarm probability α, of both empirical and theoreti-
cally established results (13) are compared. Similarly, Fig-
ure 5 (b) shows a comparison between empirical and theoreti-
cal detection power as a function samples variance, σ2

1 , under
alternative hypothesisH1. The numerical results presented in
Figure 5 (b) are obtained with a false-alarm probability set to
α = 0.05. From Figure 5 (a) and 5 (b) it is obvious that the
empirical detection powers are almost identical to the theoret-
ically established ones (13); this shows the sharpness and the
relevance of theoretical findings.

To emphasize the improvement of the proposed test com-
pared to [5], Figure 6(a) presents the detection performance,
as ROC curves, of those detectors. It can be noted that, for
instance, for α = 0.2, the proposed test power is above 0.85
while it is below 0.35 using Gallagher’s method. In addition,
when the detected images with the low image quality, the pro-
posed test preserves a high detection performance. This is
emphasized in Figure 6(b), which presents ROC curves of the
proposed test for uncompressed images and compressed im-
ages with Jpeg standard and quality factors ranging from 55
to 95.

Finally it is proposed to study the detection performance
of the proposed test in the context of anti-forensics consid-
ered in this paper. First, it is proposed to apply a Gaussian
blur to both PIM and CG on the assumption that such a blur-
ring process should largely reduce the noise variance. In addi-
tion, PIM images are subjected to deterministic degradations,
which are well modeled as blurring processes, during its ac-
quisition. Figure 7(a) shows the empirically obtained detec-
tion performance, of both the proposed test and the method
proposed in [5], after image blurring. Second, knowing the
image acquisition pipeline, it is reasonable to assume that
one may try to simulate the CFA interpolation in CG images.
Hence, it is proposed in this paper to apply the well known
bi-linear demosaicing filter on all the CG images. The em-
pirically obtained results are shown in Figure 7(b); these par-
ticularly highlight that the detection method proposed in [5]
performs poorly. In fact since most of the PIM images have a
small peak, or no peak at all, the simulation of CFA interpo-
lation artificially creates a periodic pattern which results in a
peak in CG diagonal mean spectrum. The method proposed
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Fig. 6: Illustration of the proposed test (10) performance for
real PIM and CG images.

in [5] hence easily classifies CG images as PIM images as
soon as the CFA interpolation process is simulated. The re-
sults from Figure 6 emphasizes the lack of the robustness of
the detection method proposed in [5] and, on the opposite,
highlights the efficiency as well as the good robustness of the
proposed statistical test (10).

6. CONCLUSION

In this paper, we describe an approach of distinguishing be-
tween PIM and CG images based on statistical decision the-
ory. A linear parametric model is developed to deal with nui-
sance parameters. By using the residual noise nk representing
the property of each detected image, hypothesis testing model
is exploited to categorize two kinds of images. The method
proposed in this paper overcomes the detector proposed in [5]
and improves the detection accuracy. Moreover, experimental
results also emphasize that the proposed method has a good
robustness with respect to basic anti-forensic techniques.

7. REFERENCES

[1] S. Lyu and H. Farid, “How realistic is photorealistic?,”
Signal Processing, IEEE Transactions on, vol. 53, no. 2,
pp. 845–850, 2005.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

α

po
w

er
β
δ

Gallagher detector [5]

Proposed test (10)

(a) Comparison of robustness with respect to Gaussian blur: detection perfor-
mance of the two methodologies

0 0.2 0.4 0.6 0.8 1
0

0.5

1

α

po
w

er
β
δ

Gallagher detector [5]

Proposed test (10)

(b) Comparison of robustness with respect to simulated CFA interpolation

Fig. 7: Comparison of detection performance in the presence
of anti-forensic process.

[2] S. Bayram & al., “Source camera identification based on
cfa interpolation,” in IEEE Intl. Conf. on Image Process-
ing, 2005.

[3] H. Cao and A.C Kot, “Accurate detection of demosaic-
ing regularity for digital image forensics,” Information
Forensics and Security, IEEE Transactions on, vol. 4, no.
4, pp. 899–910, 2009.

[4] A. Swaminathan & al., “Digital image forensics via in-
trinsic fingerprints,” Information Forensics and Security,
IEEE Transactions on, vol. 3, no. 1, pp. 101–117, 2008.

[5] A.C. Gallagher and T. Chen, “Image authentication by
detecting traces of demosaicing,” in Proc. of IEEE CVPR
conf., 2008, pp. 1–8.

[6] R. Cogranne and F. Retraint, “An asymptotically uni-
formly most powerful test for LSB matching detection,”
Information Forensics and Security, IEEE Transactions
on, vol. 8, no. 3, pp. 464–476, 2013.

[7] E. Lehman and J. Romano, “Testing statistical hypothe-
ses,” in Second Edition. Springer, 2005.

[8] T.T. Ng & al., “Columbia photographic images and pho-
torealistic computer graphics dataset,” Columbia Univer-
sity Technical Report, 2005.

5


