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AR PROCESSES WITH NON-GAUSSIAN ASYMMETRIC INNOVATIONS
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ABSTRACT

We consider the problem of modeling non-Gaussian corre-
lated signals by autoregressive models with skew exponential
power innovations. Generalized moments and maximum like-
lihood estimators of the parameters are proposed and large
sample properties are established. Finite sample behavior of
the estimators is studied via Monte Carlo simulations. An ap-
plication to real data is considered.

Index Terms— Non-Gaussian, asymmetric distribution,
autoregressive model, maximum likelihood estimation.

1. INTRODUCTION

Many modern signal processing applications and systems
are faced with various and complex noise environments.
These noises may be non-Gaussian and have symmetric or
asymmetric marginals. The non-Gaussian character of these
noise sources can significantly weaken the performance of
conventional statistical tools which are designed to operate
effectively in Gaussian environments. From the last cen-
tury, interest has grown in the construction of flexible classes
of distributions that, unlike the Gaussian distribution, may
be platykurtic or leptokurtic and asymmetric. Among these
classes, some families strictly including the Gaussian distri-
bution not only as a limiting case but as a proper member.
These families are interesting because they can vary con-
tinuously from Gaussianity to non-Gaussianity and from
symmetry to asymmetry. For instance, the exponential power
distribution introduced by [1] and used by [2, Chapter 3] in
robustness analysis, offers departure from Gaussianity. The
works by [3] and [4] introduced a class of asymmetric dis-
tributions, called skew-normal, which includes the normal
distribution as a special case. An alternative method for
generating skew distributions from symmetric distributions,
based on the introduction of an asymmetry parameter was
suggested by [5] which proposed a skew exponential power
(SEP) distribution. On the other hand, the epsilon-skew-
normal distribution, the origin of which can be traced back
to [6] was defined by [7]. A more general class of asym-
metric distributions, encompassing the families in [5] and [7]
was presented and analyzed by [8]. Here, we shall use the
SEP distribution proposed by [8], see also [9]. This SEP
distribution family strictly includes the normal and Laplace

distributions, accommodates practical values of skewness and
kurtosis, and is analytically tractable. Therefore, its use in
data modeling, statistical analysis and robustness studies of
normal theory methods is attractive.

We are interested in modeling non-Gaussian correlated
signals. The dependence of the data is captured by a linear
model. In the 1990’s, after the publication of the pioneer work
by [10], the statistical signal processing community has stud-
ied extensively the use of high-order moments to process this
type of signals. The moments (or cumulants) approach is at-
tractive since in general it results in estimation techniques that
are easy to implement. Nevertheless, high order moments
estimators may suffer from their lack of efficiency. Here,
we use a parametric approach in which a sufficiently broad
family of distributions can be represented. Recent contribu-
tions in this domain include [11] which employed an autore-
gressive moving average (ARMA) model driven by Laplace
noise to fit weekly data on sulphate concentration in a Cana-
dian watershed. The generation of ARMA signals with speci-
fied marginal distributions was investigated by [12], [13] and
[14], among others. ARMA signals driven by infinite vari-
ance noises with stable distributions were also studied. Ap-
plications of stable distributions in many area of signal pro-
cessing, including blind channel identification and deconvo-
lution and robust performing were presented by [15]. Recent
contributions include radar cross section modeling applied to
synthetic aperture radar image processing by [16], and tex-
ture information characterization in rotation-invariant image
retrieval by [17].

The linear model considered in this paper is an AR model.
Indeed, AR models are very popular in the signal processing
community, see for instance [18] and [19]. They are used
for instance for spectral analysis, for modeling speech and
audio signals, and for identifying systems in control engi-
neering. Causal AR models with independent innovations
have the nice property that optimal (in the mean square sense)
nonlinear infinite past predictors reduce to linear finite past
predictors. Furthermore, the so-called Yule-Walker estima-
tor of the parameters of an AR model can be easily calcu-
lated using the well-known Levinson-Durbin algorithm, lead-
ing to fast implementations. The Yule-Walker estimator is
strongly consistent and asymptotically efficient when the in-
novations are Gaussian, see for instance [20, Chap. 8]. AR
models with non-Gaussian innovations have been considered
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in the literature, see e.g. [21] and references therein. For in-
stance, symmetric non-Gaussian innovations were considered
by [22], asymmetric Laplace innovations were used by [23],
and epsilon-skew-normal innovations were proposed by [24].
In this work, we consider SEP innovations, thus allowing
more flexibility in the choice of the conditional distribution
of the data. Our model is particularly suited for processes that
are skewed and leptokurtic, but which appear to have finite
higher order moments. The Yule-Walker estimator of the AR
parameters is strongly consistent and asymptotically normal,
but it fails to be asymptotically efficient since the innovations
are non-Gaussian. Therefore, maximum likelihood estimators
(MLE) of the parameters are proposed and their limit distri-
butions are derived.

The rest of this paper is organized as follows. The AR
model with SEP innovations is presented in Section 2. Gen-
eralized moments estimates and MLE of the parameters are
established in Section 3. Numerical simulation results are
presented in Section 4, and a real data modeling is considered
in Section 5. Concluding remarks can be found in Section 6.

2. MODEL DESCRIPTION

Let fα(x) = c exp(−|x|α)1R(x) where α > 0 is a shape pa-
rameter, c−1 = 2Γ(1 + 1/α) and Γ is the Gamma function.
Function fα is the probability density function of the expo-
nential power distribution, called generalized Gaussian distri-
bution. It changes gradually from fat-tailed for 0 < α < 2, to
short-tailed for α ≥ 2, as α increases. With α = 1, α = 2,
and α → +∞, fα reduces to the Laplace, Gaussian and uni-
form densities, respectively. A skewed version of fα is

f(α,ε)(x) = fα

[
x

1 + ε

]
1{x<0}+fα

[
x

1− ε

]
1{x≥0},

where ε ∈ (−1, 1) is the skew parameter. We extend the
family f(α,ε) to include location and scale parameters. Let
Y be a random variable with density f(α,ε). The family of
location-scale SEP distributions is defined as the distribution
of Z = µ + σY for µ ∈ R and σ > 0. The corresponding
density is given by

fθ(x) =
1

σ
fα

[
x− µ

(1 + ε)σ

]
1{x<µ}+

1

σ
fα

[
x− µ

(1− ε)σ

]
1{x≥µ},

where θ = (α, ε, µ, σ), and we denote Z ∼ SEP(α, ε, µ, σ).
The distribution of Z is unimodal with mode at µ and it has
probability mass (1+ε)/2 below the mode. A useful stochas-
tic representation of Z as the product of two independent ran-
dom variables was established by [8], as well as the expres-
sions of the median and the moments of Z. For r > −1,
let

dr =

∫ +∞

−∞
|x|rfα(x)dx = Γ

(
r + 1

α

)/
Γ

(
1

α

)
.

Let Y ∼ SEP(α, ε, 0, 1) and µr = E(Y r). Then

µr =
(1− ε)r+1 + (−1)r(1 + ε)r+1

2
dr.

Let Z ∼ SEP(α, ε, µ, σ). We have Z = µ + σY , and then
Z − E(Z) = σ(Y − µ1). The mean, variance, skewness and
kurtosis of Z are respectively,

E(Z) = µ− 2εσd1,

Var(Z) = σ2[(1 + 3ε2)d2 − 4(εd1)2],

E(Z − E(Z))3 = σ3[µ3 − 3µ2µ1 + 2µ3
1],

E(Z − E(Z))4 = σ4[µ4 − 4µ3µ1 + 6µ2µ
2
1 − 3µ4

1].

(1)

For the wide ranges of skewness and kurtosis that can be ob-
tained when the shape and skew parameters vary, see [8].

An AR(p) model with SEP innovations is defined by the
difference equation

Xt = φ1Xt−1 + . . .+ φpXt−p + Zt, (2)

where (Zt) is a sequence of independent and identically dis-
tributed (iid) random variables with Zt ∼ SEP(α, ε, µ, σ),
and polynomial φ(z) = 1−φ1z−· · ·−φpzp with real coeffi-
cients has no zeros in the closed unit disk {z ∈ C : |z| ≤ 1}.
The (unique) stationary solution (Xt) of (2) has the MA rep-
resentation Xt =

∑∞
i=0 ψiZt−i, where (ψi) are the coeffi-

cients in the Taylor series expansion of 1/φ(z) for |z| ≤ 1.
We have

∑
|ψi| < +∞, and then finiteness of E(|Zt|k) im-

ply finiteness of E(|Xt|k) for all k ≥ 1.

3. PARAMETER ESTIMATION

Fitting model (2) to some data consists in choosing p and
estimating the parameter vector η = (φ′, α, ε, µ, σ)′ where
φ = (φ1, . . . , φp)

′ and φ′ denotes the transpose of φ. In the
following, C is the interior of the domain of vectors φ such
that φ(z) has no zeros in the closed unit disk. We shall first
propose generalized moments estimates which will be used as
initial values in a quasi-Newton method to find MLE.

The standard Yule-Walker equations for model (2) are

M2φ = m2,

where M2 is the invertible covariance matrix [m2,i−j ]
p
i,j=1,

m2 = (m2,1, . . . ,m2,p)
′ and m2,k = E(X0Xk) − E(X0)2.

The Yule-Walker estimator φ̂n of parameter vector φ based
on observations (Xt)

n
t=1 is φ̂n = M̂−12 m̂2, where M̂2

is the sample covariance matrix [m̂2,|i−j|]
p
i,j=1, m̂2 =

(m̂2,1, . . . , m̂2,p)
′ with m̂2,k = 1

n

∑n−k
t=1 (Xt − X)(Xt+k −

X) and X = 1
n

∑n
t=1Xt. According to [20, Theorem 8.1.1],

φ̂n
a.s.−−→ φ and n1/2(φ̂n − φ)

d−→ N (0,Var(Z)M−12 ) as
n → ∞. Moreover, the covariance matrix Var(Z)M−12

depends only on the parameter vector φ.
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Let

Ẑt = Xt − φ̂n,1Xt−1 − · · · − φ̂n,pXt−p.

The moments estimates of (α, ε, µ, σ) are obtained by solving
(1) where the left-hand sides are replaced by the correspond-
ing sample moments obtained from (Ẑt). More precisely, let

ĉk,Z =
1

n

n∑
t=p+1

(
Ẑt − Ẑ

)k
where Ẑ =

1

n

n∑
t=p+1

Ẑt.

Observe that dr and µr only depends on α and (α, ε), re-
spectively. Then the standardized skewness and kurtosis de-
fined respectively by E(Z − E(Z))3/Var(Z)3/2 and E(Z −
E(Z))4/Var(Z)2 only depend on (α, ε). Generalized mo-
ments estimates (α̂n, ε̂n) of (α, ε) are obtained by minimizing
the sum of squares

w1

(
ĉ3,Z

ĉ
3/2
2,Z

− µ3 − 3µ2µ1 + 2µ3
1

[(1 + 3ε2)d2 − 4(εd1)2]3/2

)2

+

w2

(
ĉ4,Z
ĉ 22,Z

− µ4 − 4µ3µ1 + 6µ2µ
2
1 − 3µ4

1

[(1 + 3ε2)d2 − 4(εd1)2]2

)2

,

where w1 and w2 are positive weights. Then estimates
(µ̂n, σ̂n) of (µ, σ) are given by

µ̂n = Ẑ + 2ε̂nσ̂nd1(α̂n),

σ̂2
n = ĉ2,Z [(1 + 3ε̂ 2n)d2(α̂n)− 4(ε̂nd1(α̂n))2]−1.

Since (Zt) is non-Gaussian, φ̂n is not asymptotically ef-
ficient in general. We now present the MLE of η, and in
the following we suppose that η0 is the true value of η. We
consider the likelihood estimator based on maximization of
the conditional likelihood of (X1, . . . , Xn) conditionally to
(X1, . . . , Xp). According to (2), the logarithm of the condi-
tional likelihood is

Ln(η) =
∑n
t=p+1 ln fθ(Xt − φ1Xt−1 − · · · − φpXt−p).

Our main result is the following.

Theorem 1. Let (Xt) be defined by (2) where φ = φ0 and
(Zt) are iid random variables with a SEP(α0, ε0, µ0, σ0) dis-
tribution, and let η0 = (φ′0, α0, ε0, µ0, σ0)′ ∈ C× (1,+∞)×
(−1, 1) × (−∞,+∞) × (0,+∞). Then, there exists a se-
quence of estimators (η̃n) such that, for any ε > 0, there ex-
ists an event E with P(E) > 1− ε and an n0 such that on E,
for n > n0, ∂Ln

∂η (η̃n) = 0 and Ln attains a relative maximum
at η̃n. Furthermore, as n→∞,

(i) η̃n
a.s.−−→ η0,

(ii) n1/2(η̃n − η0)
d−→ N (0,Σ), where

Σ = σ2
0(1− ε20)

Γ(1 + 1/α0)

α0Γ(2− 1/α0)

(
M−12 · · ·

... · · ·

)
.

(iii) The covariance matrix Σ can be estimated strongly con-
sistently by replacing η0 by η̃n in its expression. One
may also replace M2 by the estimated covariance ma-
trix [m̂2,|i−j|]

p
i,j=1.

Remark 1. The MLE η̃n is asymptotically efficient, i.e., Σ is
the inverse of the Fisher information matrix of η evaluated at
η0.

4. MONTE CARLO SIMULATIONS

In this section, we illustrate the finite sample behavior of
MLE by Monte Carlo simulations. All the experiments are
based on 1000 replications, and the numbers of data consid-
ered are n = 300 and n = 1000. The data generating process
is a causal AR(1) model with Zt ∼ SEP(α, ε, µ, σ). We fix
(µ, σ) = (10, 1) and we study the influence of φ, α and ε. We
take φ = 0.3 and φ = 0.8 (simulation results show that there
are no differences between φ > 0 and φ < 0), α = 1, α = 2
and α = 3, and ε = −0.95,−0.9,−0.8, . . . , 0.8, 0.9, 0.95.
The mean square errors (MSE) of the parameter estimates
measure the performances of the estimators.

Figure 1 displays the MSE of the five parameters in η̃n
when n = 1000. The MSE of α̃n and ε̃n decrease as α de-
creases. Only the MSE of φ̃n and µ̃n seem to be notably
influenced by φ. The larger φ is, the smaller the MSE of φ̃n is
and the larger the MSE of µ̃n is. Parameter ε does not affect
the MSE of α̃n and σ̃n. As the absolute value of ε decreases,
the MSE of φ̃n, ε̃n and µ̃n increase.

Figure 2 presents the MSE of the five parameters in η̃n
when n = 300 and n = 1000, and φ = 0.8, α = 2. To plot
on a same figure the different MSE, we use the relative MSE
which is the MSE divided by the square of the true value of
the parameter (when ε = 0, the relative MSE of ε̃n is not
defined). Not surprisingly, the relative MSE increases as n
decreases. We see that the relative MSE of ε̃n is the largest
and the relative MSE of φ̃n and σ̃n are the smallest.

5. REAL DATA EXAMPLE

We consider the Dow-Jones Utilities index between Septem-
ber 20, 1967 and November 26, 1968. This series is non-
stationary, but the differenced series shows no obvious devi-
ations from stationarity, see [25, Example 5.1.1]. Figure 3(c)
and (d), as well as Akaike information criterion suggest to
fit an AR(2) model to the differenced series. Figure 3(b) in-
dicates that the differenced series is asymmetric, and this is
confirmed by the rejection of the null hypothesis at the 99%
significance level in the symmetry test of [26].

We fit an AR(2) model with SEP innovations to the dif-
ferenced series and we compare with an AR(2) model with
Gaussian innovations. The results are given in table 1. The
95% confidence intervals for α and ε deduced from table 1
are (1.05, 1.21) and (−0.26,−0.02), respectively. Therefore,
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Fig. 1. MSE of φ̃n, α̃n, ε̃n, µ̃n and σ̃n when n = 1000.
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Fig. 3. Differenced series of the Dow-Jones Utilities index
(Sep. 20, 1967 - Nov. 26, 1968): (a) Series, (b) Histogram,
(c) Sample autocorrelation function, (d) Sample partial auto-
correlation function.
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η
SEP Gaussian

Estimate Variance Estimate Variance
φ1 0.21 9.28e-5 0.32 1.64e-3
φ2 0.18 9.28e-5 0.15 1.64e-3
α 1.13 1.58e-3 - -
ε -0.14 4.05e-3 - -
µ -0.07 1.06e-3 0.019 1.39e-3
σ 0.37 4.82e-4 0.63 6.93e-4

Table 1. AR(2) models with SEP and Gaussian innovations.

both Gaussianity and symmetry of the innovations are re-
jected.

Finally, we use the normality tests by Jarque-Bera,
Shapiro-Francia, Shapiro-Wilk, Pearson (χ2), Anderson-
Darling, and Cramer-von Mises, to check the residuals of
the Gaussian AR(2) model. The corresponding p-values are
2.2 · 10−16, 8.9 · 10−6, 6.2 · 10−6, 1.1 · 10−3, 6.5 · 10−5 and
1.7 · 10−4. Therefore, all tests reject the null hypothesis of
normality at the 95% confidence level.

6. CONCLUSIONS

We have proposed an AR process with SEP innovations to
model non-Gaussian asymmetric correlated data. The great
flexibility of the SEP distribution allows to model a large
class of data which are skewed and fat-tailed or short-tailed
and have finite higher order moments.
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