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ABSTRACT

The paper studies the problem of designing and simulating the
high speed wide-band Analog-to-Digital Converters (ADC)
working in bandpass scenario. Such ADCs play a crucial role
in Software Defined Radio (SDR) technology or Cognitive
Radio (CR). One approach to circumvent present-days limits
of ADC technologies is to split the analog input signal into
multiple components and then sample them with ADCs in
parallel. In this paper the frequency splitting approach is im-
plemented using Hybrid Filter Bank ADC (HFB ADC). The
proper simulation methodology of the HFB ADC remains a
challenge. Special care should be taken for utilizing real val-
ued signal and filter coefficients at every step of calculation.
When computation are done in the frequency domain, the
nulls in the spectrum may give rise to singularities. A shifted
Fourier Transform is proposed to get rid of this.

Index Terms— shifted Fourier transform, hybrid filter
bank, bandpass sampling, parallel ADC, simulation method-
ology

1. INTRODUCTION

The HFB ADC architecture belong to the well known class of
multirate system [1]. There exist many practical implementa-
tions of multirate system in communication, speech process-
ing, image compression and voice privacy system. During the
last decades, the ADC architectures based on parallel sam-
pling [2] have received a strong interest, as parallel architec-
tures (both Time Interleaved [3] and Filter Bank based [4]) are
seen as being able to overcome the technological bottleneck
of wide band sampling with high resolution. Both parallel ar-
chitecture suffer from sensitivity to imperfections and require
calibration to reach state of the art performances [5, 6, 7].
Digitally assisted architecture for the purpose of calibration
offer promising perspectives as the relative energy cost of dig-
ital electronic compared to the analog one used in ADC have
decreased roughly speaking ten time faster over the past years

The research leading to these results has received funding from the Eu-
ropean Seventh Framework Program under grant agreement no 230688.

[8]. Therefore HFB ADC architecture is one of the natural
candidate to design a high-speed, wide-band, high resolution
ADC for CR/SDR systems.

HFB ADC relies on sub-band sampling [2] and is derived
from Perfect Reconstruction (PR) digital Filter Bank (FB) [1].
The HFB ADC (Fig. 1) splits input signal into M sub-bands
using analog filter bank, producing M -channel analog sig-
nals. Signals in each channel are sampled by a sub-channel
ADC, then up-sampled and finally discrete time synthesis fil-
ter bank is used to reconstruct the digital signal. Nyquist
theory states that sampling frequency should be two times
the bandwidth, thus the ADCs sampling frequency can be M
times lower, because they deal with sub-band signals.

Existing approaches to HFB always make the assumption
that the input signal is strictly limited to the band of interest
[6, 9]. Thus the sampled signal may only suffer from in-band
aliasing distortion. This is indeed a strong assumption which
may appear quite optimistic in view of scenario where wire-
less channel dedicated to a cognitive communication may be
crowded. This remains true even if we consider the shape of
the receiver band-pass filter. It is thus important to under-
stand the impact of the aliasing caused by the “out of band”
energy on the performance of the HFB ADCs. Designing and
simulating wide-band, high speed band-pass ADC for use in
CR/SDR systems is quite specific and special care should be
taken for the system simulation. Usually multirate systems
utilize only digital signals, while in our case the input is an
analog signal with very wide spectrum. Therefore the analog
signals have to be sampled in the multirate structure, which
raises the problem of the aliasing for the unwanted signals,
but also for the wanted signals, i.e. bandpass sampling. In ad-
dition, system simulation of HFB ADCs have also to model
properly the analog filters in the digital domain.

2. HYBRID FILTER BANK AD CONVERTER FOR
SAMPLING BANDPASS RF SIGNALS

Let us consider a signal,X(jΩ), having a spectrum of interest
limited to:

B = (−Ω2,−Ω1) ∪ (Ω1,Ω2), (1)

EUSIPCO 2013 1569742569
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Fig. 1. The hybrid filter bank architecture of ADC

X(jΩ) = 0 for Ω /∈ B, (2)

with Ω being the continuous angular frequency from −∞ to
∞ in [πrad/s]. Such signal can be sampled using a sampling
frequency Ωe ≥ 2(Ω2 − Ω1).

Let Hm(jΩ) be the transfer function of the m-th filter
from the Analysis Filter Bank (AFB) - Figure 1. Then the
output of this channel is

Vm(jΩ) = X(jΩ)Hm(jΩ). (3)

The AFB splits the band of interest, B, into M uniform
sub-bands. Each sub-bands is then sampled using sampling
frequency M times lower than desired frequency 1/Te. The
spectrum at the output of each ADC is given by

Ym(ej
ω
M ) =

1

MTe

∞∑
l=−∞

Vm

(
j

(
ω

MTe
− 2πl

MTe

))
, (4)

with Ω =
ω

MTe
.

Because of (2) the above sum has nonzero element only
for l = 1, . . . ,M − 1, hence we obtain

Ym(ej
ω
M ) =

1

MTe

M∑
l=0

Vm

(
j

(
ω

MTe
− 2πl

MTe

))
. (5)

Consequently the up-sampled signal is given by

Sm(ejω) =
1

MTe

M∑
l=0

Vm

(
j

(
ω

Te
− 2πl

MTe

))
. (6)

Without loss of generality, let Ω2−Ω1 = 1 [πrad/s] hence
the normalized sampling frequency is 1/Te = 1. Using the
notation

ω
(l)
M =

(
ω

Te
− 2πl

MTe

)
=

(
ω − 2πl

M

)
, (7)

we obtain

Sm(ejω) =
1

M

M∑
l=0

Vm

(
jω

(l)
M

)
. (8)

Combining (3) and (8) the HFB ADC output signal is given
by

X̂(ejω) =
1

M

M∑
l=0

X
(
jω

(l)
M

)M−1∑
m=0

Fm(ejω)Hm

(
jω

(l)
M

)
.

(9)

The classical form of this equation is

X̂(ejω) = X(jω)T0(ejω) +

M−1∑
l=1

X
(
jω

(l)
M

)
Tl(e

jω), (10)

where T0(ejω) is the system distortion function:

T0(ejω) =
1

M

M−1∑
m=0

Fm(ejω)Hm(jω), (11)

∑M
l=1 Tl(e

jω) is the system aliasing function

Tl(e
jω) =

1

M

M−1∑
m=0

Fm(ejω)Hm

(
jω

(l)
M

)
. (12)

The HFB system defined by (10) has the PR property if

T0(ejω) = ejωd and Tl(ejω) = 0 for l 6= 0. (13)

This means that the system distortion function have to be a
pure delay and all the aliasing terms have to be equal to zero.
Equivalently, these conditions can be rewritten in a matrix
form as follows

1

M
H(jω)F(ejω) = T(ejω), (14)

where F(ejω) = [F0(ejω), . . . , FM−1(ejω)]T is the vector of
frequency response for the synthesis filter bank, H(jω) is the
matrix of modulated frequency response of the AFB H0(jω) . . . HM−1(jω)

... Hm(jω
(l)
M )

...
H0(jω

(M−1)
M ) . . . HM−1(jω

(M−1)
M )

 (15)

and T(ejω) is the vector of frequency response for the distor-
tion and aliasing transfer functions

[T0(ejω), . . . , TM−1(ejω)]T = [ejωd, 0, . . . , 0]T . (16)

Thus the frequency response of the synthesis filter bank
can be calculated by solving (14) for F(ejω).

2.1. Equivalent-Digital Filter Bank

If the input signal does not fulfill strictly the bandpass as-
sumption (2), we should take into account all the aliasing
terms in (4):

Ym(ej
ω
M ) =

1

M

∞∑
l=−∞

Vm

(
j

(
ω

M
− 2πl

M

))
, (17)

hence

X̂(ejω) = X(jω)T0(ejω)+

∞∑
l=−∞
l 6=0

X
(
jω

(l)
M

)
Tl(e

jω). (18)
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Hm (s)

Gm(z )

 ADC Y m( z1/M )X (s )

M Y m( z1/M )

=

Fig. 2. The equivalent-digital analysis filter bank

In this case the system distortion function remains the same as
in (10) but now there are an infinite number of aliasing terms
and thus an infinite number of linear equations.

To handle this case we introduce the equivalent-digital
analysis filter bank G(ejω). Instead of using continuous
domain transfer function, the equivalent-digital system (pre-
sented in Figure 2) is used in our design. Hence the assumed
input signal X(jΩ) is multiplied by the transfer functions of
the input filters, then the product is sampled at the angular
sampling frequency Ωe and we obtain the equivalent-digital
filter bank modulation matrix G(ejω) defined as G0(ejω) . . . GM−1(ejω)

... Gm(ejωW l
M )

...
G0(ejωWM−1

M ) . . . GM−1(ejωWM−1
M )

 ,
where W l

M = e−j2πl/M , as for digital FB [1].
It should be noted that the equivalent-digital transfer func-

tions Gm(ejω) does not depend only on the analog analysis
filters but also on the “out of band” input signal. All the “out
of band” signal is first filtered in the continuous domain and
then aliased to the frequency interval ω ∈ [−π, π] through the
sampling process.

The formula (14) can be rewritten using the equivalent-
digital AFB to calculate the synthesis FB F(ejω) from
G(ejω):

1

M
G(ejω)F(ejω) = T(ejω). (19)

It is worth noting that the matrix H(jω) is equal to
G(ejω) when the strict band-limitedness assumption for the
input signal (2) is fulfilled.

3. FREQUENCY MODEL OF THE BANDPASS
SAMPLING AND BANDPASS FILTER BANK

The equation (2) corresponds to a strictly band limited, real
valued input signal x(t). It can be sub-sampled with a sam-
pling frequency fulfilling the following constraints [10]:

2Ω2

m+ 1
≤ Ωe ≤

2Ω1

m
(20)

For the sake of simplicity, let us assume that Ω2−Ω1 = π and
m = 2l, this allows to alias all the negative pulsations from
the interval (−Ω2,−Ω1) to the negative pulsations (−π, 0)

and all the positive pulsations form interval (Ω1,Ω2) to posi-
tive pulsations (0, π). Then we have:

Ωe = 2π, Ω1 = lΩe and Ω2 =

(
l +

1

2

)
Ωe. (21)

This sampling frequency is valid only if there are no signal
components at Ω1 and Ω2 [10].

To design the HFB ADC, we first need to calculate the
equivalent-digital filter bank through

X(jΩ)Hm(jΩ) = Vm(jΩ). (22)

Next, after sampling, we obtain:

Gm(ejω) =
∑
n∈Z

Vm (j(ω − nΩe)) , (23)

where ω ∈ (−π, π). Because of (21) the above sum has only
two nonzero terms for n = ±l so

Gm(ejω) = Vm(j(ω − Ω1)) + Vm(j(ω + Ω1)). (24)

When (24) is calculated using regular Fourier Transform, the
discrete frequencies used are:

ω =
2πk

N
, k = [−N/2, . . . , N/2− 1]. (25)

Therefore we obtain Gm(ejω) =
Gm

(
j2πk
N − Ω1

)
k = [−N/2 + 1, . . . ,−1],

Gm

(
j2πk
N + Ω1

)
k = [1, . . . , N/2− 1],

0 k = [−N/2, 0].

(26)

Consequently the system of equations (19) is underdeter-
mined and Gm(ejω) has no constraints for ω = −π and
ω = 0. As this situation arises from the fact that the input sig-
nal has no energy at these frequencies, the shape of Gm(ejω)
could be set freely for ω = −π and ω = 0. A straightforward
solution that fulfills the hermitian symetry of the spectrum
for real signals is to replace the null values of Gm(ej0) and
Gm(e−jπ) by the ones that are interpolated using for instance
splines. In that case the bandpass filters at the edges of the
band of the input signal (2) will become respectively a low
pass and a high pass filters in base band after sampling.

Another approach is to sample the frequency line as fol-
lows :

ω =
2π(2k + 1)

2N
, k = [−N/2, . . . , N/2− 1]. (27)

Thus instead of using regular Fourier transform we utilize this
shifted one :

X(k) =

N−1∑
n=0

x(n)e−jπn(2k+1)/N . (28)
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It is easy to check that functions e−jπn(2k+1)/N spans the
frequency space like the traditional Fourier transform. The
only difference is that the proposed transform is calculated at
frequency points shifted by an half of a frequency bin.

e−jπn(2k+1)/N = e−j
2πnk
N e−j

1
2

2πn
N . (29)

This discretization scheme involves implicitly an interpola-
tion for the values atGm(ej0) andGm(e−jπ) and in that case
too, we get a low pass and a high pass filters in base band af-
ter sampling instead of the bandpass filters at the edges of the
band of the input signal (2).

4. RESULTS OF THE HFB ADC SIMULATIONS IN
FREQUENCY DOMAIN

The experimental distortion function of the HFB ADC system
is defined as the ratio between input and output signals

Tx(ejω) =
X̂(ejω)

X(jω)
, (30)

whereX(jω) is the baseband equivalent spectrum of the con-
tinuous input signal perfectly bounded to the band B and
down-converted to ω ∈ (−π, π). Combining (30) with (10),
the following formula can be obtained

Tx(ejω) = T0(ejω) +

M−1∑
l=1

Tl(e
jω)

X(jω
(l)
M )

X(jω)︸ ︷︷ ︸
aliasing function

(31)

where, from (14), the theoretical distortion function is

T0(ejω) = G(0)(ejω)F(ejω). (32)

The G(0)(ejω) is the first row of the matrix G(ejω). Thus
experimental aliasing of the system can be calculated as

Ta(ejω) = Tx(ejω)− T0(ejω). (33)

In our tests the AFB was composed of eight sixth order
bandpass Butterworth filters. The set-up of each test was
composed of tree steps: system design, simulation and re-
sult checking. In this first step, the transfer functions G(ejω)

are derived based on an assumed In-band to Out-band signal
Power Radio (IOPR). Then the synthesis filter bank F(ejω)
is obtained by solving equation (19). In the second step, the
spectrum with a given IOPR (not necessarily the same as in
the design step) of a test signal X(jΩ) is generated and pro-
cessed by the HFB ADC. Finally the experimental distortion
transfer and aliasing functions are calculated.

For the system design step, the bandwidth of the input
signal was normalized to 1[πrad/s] and lies in the following
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Fig. 3. The effect of simulating HFB ADC using traditional
Fourier transform, signal IOPR=20dB.

interval B = (−11,−10) ∪ (10, 11)[πrad/s], while consider-
ing continuous frequency range was Ω ∈ (−20, 20)[πrad/s].
The continuous input signal power was:

X(jΩ) =

{
1 Ω ∈ B
10−IOPR/10 Ω /∈ B (34)

For the experimental results presented in this paper, the same
input signal was used during design and simulation steps.

Figure 3 shows the distortion and aliasing transfer func-
tions of the HFB ADC which was calculated using regular
Fourier transform and spline interpolation. One can observe
spikes which are appearing exactly at each multiple of Ωe/M
which is equal to π/4 in our test case. This occurs because
of the sampling process which is modeled by the modula-
tion matrix (9) followed by the up-samplers which mirrors the
base band spectrum of each branch, especially the lower and
the upper ones which are impacted by the lack of energy of
the input signal at frequencies Ω1 and Ω2, which correspond
to 0 and −π in baseband, see (26).

Figure 4 presents the distortion and aliasing transfer func-
tions of the system calculated using shifted frequency trans-
form. It is clear that the proposed transform allows to sup-
press spectrum spikes and improve the convergence towards
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Fig. 4. Simulation result using proposed frequency transform,
signal IOPR=20dB.

PR condition for all frequencies.

5. CONCLUSION

This paper addresses the modelization of a bandpass HFB
ADC architecture designed to sample wide-band signals di-
rectly at RF or IF frequency. The design and simulation
methodology of the bandpass HFB ADC system in frequency
domain was presented. An equivalent-digital analysis filter
bank (19) was proposed to model the bandpass sampling of a
wide-band signal directly in RF band.

Two different schemes were proposed to model the pass-
band to baseband aliasing in frequencies due to sampling.
This two different schemes exhibit different level of quality
regarding the PR property. Simulation results show that it is
possible to reach PR condition for the desired IOPR.By us-
ing the shifted Fourier transform we are able to suppress the
spikes observed in distortion and aliasing transfer functions.

All simulations were performed utilizing floating point
arithmetics while one would expect the use of fixed point
numbers. Indeed, signals at the output of the ADCs should
be represented using a fixed number of bits modeling the cho-
sen ADC. However using fixed point numbers during simu-

lation causes several additional problems, which are beyond
the scope of this paper and will be addressed in future work.
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