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BLOCKMODEL MODULE IDENTIFICATION IN PROTEIN INTERACTION NETWORKS
THROUGH MARKOV RANDOM WALK

Yijie Wang and Xiaoning Qian

Department of Computer Science and Engineering, University of South Florida

ABSTRACT
To identify biologically meaningful modules in large-scale bi-
ological networks, general blockmodel network clustering al-
gorithms have recently attracted much attention to search for
groups of molecules that have similar interaction patterns in
networks. However, existing blockmodel module identifica-
tion algorithms suffer from the problems of prohibitive com-
putational complexity and being trapped at local optima due
to its inherent combinatorial complexity. In this paper, we
propose a novel blockmodel module identification formula-
tion based on Markov random walk to address those problems
by finding high quality approximate solutions. A new convex
optimization problem is formulated to find the low conduc-
tance (LC) sets as potential modules based on the two-hop
transition matrix of Markov random walk on networks. We
further propose a spectral approximate algorithm to find high
quality modules in large-scale networks. The experimental re-
sults on two real-world PPI (protein-protein interaction) net-
works demonstrate that our method outperforms the state-of-
the-art blockmodel module identification algorithms in terms
of the accuracy measured by the F -measure based on curated
annotations such as GO (Gene Ontology) and KOG (EuKary-
otic Orthologous Groups) categories.

Index Terms— PPI (protein-protein interaction) net-
works, Blockmodel module identification, Markov random
walk, Spectral method

1. INTRODUCTION
With increasingly large amounts of high-throughput protein-
protein interaction (PPI) measurements, one of critical chal-
lenges in computational systems biology is to understand un-
derlying cellular functional mechanisms by appropriate anal-
ysis of genome-scale PPI networks. One promising direction
to analyze PPI networks is to first identify potential func-
tional modules by network clustering. However, there is still
no widely accepted definition of functional modules to guide
functional module identification. Many existing clustering
algorithms focus on identifying topologically densely con-
nected modules [6], which may not be adequate for analyz-
ing PPI networks since proteins do not only work together
through dense connections. There are other topological struc-
tures in PPI networks that may carry essential cellular func-
tionalities. For example, receptors in signal transduction cas-

cades rarely interact with themselves but tend to interact with
similar types of cytoplasmic proteins as well as with extra-
cellular ligands [8]. In order to detect functional modules with
more general and diverse topological structures, blockmodel
module identification algorithms recently have been actively
investigated [10, 5, 8, 14, 15].

To name a few blockmodel module identification al-
gorithms, power graph (PG) [10] achieves significant edge
reduction by greedily grouping topological similar nodes in
the same module; Graph summarization (GS) [5] collects
the nodes with similar interaction patterns by compressing
a given network using a minimum description length princi-
ple. However, both PG and GS follow the bottom-up module
identification procedure and are solved based on greedy al-
gorithms; therefore the obtained results by PG and GS do not
guarantee the global optimality. To deal with data reliability
and dynamic changes in biological networks, blockmodel
module identification based on probabilistic models [3, 7]
has been proposed but these methods also converge to local
optima. Simulated annealing (SA) [8] has been implemented
to map the original network to an image graph and solve
the resulting non-convex optimization problem with high so-
lution quality. Unfortunately, SA is very time-consuming
to guarantee the global optimality. Although several algo-
rithms [14, 15] have been proposed to reduce the compu-
tational time with different heuristics, the non-convex opti-
mization formulation for blockmodel module identification is
still a barrier for analyzing large-scale PPI networks.

In this paper, we propose a novel formulation to solve the
blockmodel module identification problem based on Markov
random walk on a given network. By finding the low con-
ductance (LC) sets based on the two-hop transition matrix of
the random walk, we propose a convex optimization formu-
lation to detect both densely and sparsely connected modules
simultaneously. A spectral approximate algorithm is derived
to solve the problem. We apply our method for functional
module identification in two large-scale PPI networks. The
experimental results demonstrate that our new algorithm out-
performs two state-of-the-art blockmodel identification algo-
rithms PG and GS with comparable computational efficiency.

2. TERMINOLOGY
Let G = (V,E) represent a PPI network, in which V (|V | =
n) denotes the set of nodes (corresponding to proteins) and
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E indicates the set of edges (interactions between proteins).
Here, G is an undirected graph excluding self-connections
and we further assume that G is connected such that there
is always at least one path connecting any pair of two nodes
in G. The corresponding adjacency matrix A with each entry
Aij = 1 when nodes i and j have interactions and Aij = 0,
otherwise.

A random walker on G uniformly randomly selects one
of the neighbors to walk next at any given node. Hence, the
transition matrix P for the underlying Markov chain of the
random walk can be computed by P = D−1A, where D is
an n×n diagonal matrix formed with the corresponding node
degrees (di =

∑
j Aij , i = 1, ..., n) as its diagonal entries.

As G is connected, the underlying Markov chain of the ran-
dom walk on G is irreducible and ergodic and therefore there
exists a stationary distribution satisfying PTπ = π, where
πi = di/M,M =

∑n
i=1 di [4]. As defined in [4], we sim-

ilarly define the conductance of a proper subset of states S
(subnetwork for potential module) on G as

ΦP(S, S̄) =

∑
i∈S,j∈S̄ πiPij∑

i∈S πi
, S ∪ S̄ = V, (1)

which measures how “well-knit“ the subnetwork S is to G.

3. BLOCKMODEL BY RANDOM WALK
3.1. LC by Two-hop Transition Matrix P2

As discussed in [4], network clustering can be formulated as
the problem of finding low conductance (LC) sets on G based
on the random walk transition matrix P:

min
k∑

i=1

ΦP(Si, S̄i) s.t.

k⋃
i=1

Si = V ;Si∩Sj = ∅, i 6= j. (2)

However, this formulation can only detect densely connected
modules. For example, as shown in Fig. 1, we detect the LC
sets of three basic types of network motifs (stars, cliques, and
bi-cliques) by solving (2). The second column in Fig. 1 il-
lustrates the identified modules marked by the red dash lines.
Clearly, the densely connected modules (cliques in Fig. 1) can
be correctly partitioned. But seeking LC sets may not detect
different types of nodes with different interaction patterns for
star and bi-clique modular structures.

In order to discover meaningful modules with more gen-
eral and diverse topological structures, we propose to acquire
the LC sets in G by designing a new conductance definition
based on the two-hop transition matrix P2 (P2 = P×P) of
the random walk. The motivation is that in biological sys-
tems, molecules interacting with similar neighbors tend to
carry similar cellular functionalities. Hence, nodes with simi-
lar interaction patterns (no matter whether densely connected
or sparsely connected) should belong to the same functional
module. By random walk on G, when two nodes have simi-
lar neighbors, they are more likely to transit from each other
after two random walk hops compared to the nodes with very
different neighbors. Furthermore, the authors of GS [5] also
have discovered that the positive cost reduction only exists for
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Fig. 1. Module identification results obtained by using P and
P2. The second and third columns show the clustering re-
sults and its corresponding LC value computed by Eq.(2) and
Eq.(3) respectively. Red dash line denotes the module divid-
ing line.

pairs of nodes that are two hops away from each other. This
further consolidates that it is reasonable to consider two-hop
transition matrix P2 instead of P for identifying meaningful
functional modules in PPI networks. Based on these observa-
tions, we propose a novel blockmodel module identification
algorithm. Similar to (2), we can detect the LC sets based on
the conductance defined by the two-hop transition matrix P2:

min
k∑

i=1

ΦP2(Si, S̄i) s.t.

k⋃
i=1

Si = V ;Si ∩ Sj = ∅, i 6= j.

(3)

3.2. Convex Optimization for Blockmodel Modules
In this section, we explicitly derive the mathematical formula-
tion for searching for LC sets based on P2 as potential block-
model modules.
Proposition 1 ΦP2 (S, S) + ΦP2

(
S, S̄

)
= 1.

Proof: ΦP2 (S, S) + ΦP2

(
S, S̄

)
=

∑
i∈S,j∈S πiP

2
ij∑

i∈S πi
+

∑
i∈S,j′∈S̄ πiP

2
ij′∑

i∈S πi

=

∑
i∈S πi

∑
j∈V P2

ij∑
i∈S πi

= 1. (4)

The last equation is due to the fact that P2 is a stochastic
matrix.

Proposition 1 allows us to transfer the minimization prob-
lem (3) into to a maximization problem for the given number
of LC sets k:
Proposition 2 The following optimization problem is equiv-
alent to the optimization problem (3).

(P0)


max trace

(
XTAD−1AX

XTDX

)
s.t. X1k = 1n (a)

X ∈ {0, 1}n×k (b)

(5)

where 1k and 1n are two all one vectors with k and n elements
respectively.
Proof: Based on Proposition 1, we find the following equiva-
lence with the fixed number of modules k.
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min
k∑

i=1

ΦP2

(
Si, S̄i

)
⇔ max

k∑
i=1

ΦP2 (Si, Si) (6)

Based on (1), we have
k∑

i=1

ΦP2 (Si, Si) =

k∑
i=1

∑
i∈Si,j∈Si

πiP
2
ij∑

i∈Si
πi

=

k∑
i=1

∑
i∈Si,j∈Si

πi
∑n

l=1 Pi,lPl,j∑
i∈Si

πi

=

k∑
i=1

∑
i∈Si,j∈Si

∑n
k=1 AikPkj∑

i∈Si
di

as we recall πi = di/M and πipij = πjpji = Ai,j/M . We
now introduce a binary module assignment matrixX with the
corresponding column vector xi as the indicator vector for the
node set Si,∀i indicating a potential module. To identify k
modules, X is an n× k matrix. With that, the above equation
can be transformed as

k∑
i=1

ΦP2 (Si, Si) =

k∑
i=1

xTi APxi
xTi Dxi

=

k∑
i=1

xTi AD−1Axi
xTi Dxi

= trace

(
XTAD−1AX

XTDX

)
.

Combining this with the non-overlap module constraints (5a),
(5b), we can derive that the original minimization problem
in (3) is equivalent to (5).

We can further transform the problem as:

(P )

{
max trace

(
YTWY

)
s.t. YTY = Ik,

(7)

where Y = D1/2X
(
XTDX

)−1/2
denotes the relaxed clus-

tering indicator matrix and W = D−1/2AD−1AD−1/2.
Note that this relaxed problem (P ) is a convex optimization
problem as W is positive semidefinite and the constraint sets
forms a convex hull.

Algorithm 1 Spectral Algorithm for (P )

Input: Adjacency matrix A, diagonal degree matrix D and
number of modules k
Output: Module assignment matrix X
1. Compute W = D−1/2AD−1AD−1/2

2. Find largest k eigenvalues and their corresponding eigen-
vectors [E,VE] = eig(W, k)
3. Obtain the final module assignment by k-means: [X] =
kmeans(VE, k)
3.3. Spectral Approximate Algorithm
The procedure of solving (P ) is in fact similar to the general
spectral clustering problem [16] as shown in Algorithm 1, in
which Line 2 uses the truncated eigenvectors of W (top k
eigenvectors) to represent the original data; Line 3 uses the
standard k-means method to approximately solve blockmodel
module identification based on the top k eigenvectors. The
time complexity of our algorithm is dominated by the time to
compute eigenvectors, which is in the order O(n3).

4. RESULTS

In this section, we compare our algorithm with the state-of-
the-art algorithms on two real-world PPI networks to show
that our algorithm is superior to other existing blockmodel
module identification algorithms. Also, we give several
functional modules obtained by our algorithm, both densely
and sparsely connected, to demonstrate the potential of our
method for functional module identification.

4.1. Data and Metrics
We have run the experiments on two PPI networks, which
are the Saccharomyces cerevisiae (Sce) PPI network obtained
from DIP (Database of Interacting Proteins) [11] and the
Homo sapiens (Hsa) PPI network extracted from HPRD (Hu-
man Protein Reference Database) [9], respectively. Because
we do not have the ground truth of the functional organization
of these two networks, we evaluate our module identification
performance based on GO (Gene Ontology) terms [1] and
KOG (euKaryotic Orthologous Groups) categories [13]. GO
terms is a set of hierarchical annotations, which covers three
domains: molecular function (F), biological process (P) and
cellular component (C). In this paper, we only use the GO
terms whose information content (IC) is higher than 2 to
make sure we do not compare with large sets of proteins
at too coarse levels. The IC of a GO term g is defined as
IC = −log (|g|/|root|) [12], where “root” is the correspond-
ing root GO term (either F, P or C) of g. KOG is another
annotation which classifies the proteins from seven eukary-
otic genomes into 25 functional categories (such as T, K, R,
A ...) [13].

Table 1. Information of the two real-world PPI networks

Network |V | |E| |V ∈ GO| |V ∈ KOG|F P C
Hsa 9270 36917 5231 6603 3865 4775
Sce 4490 21911 2364 3333 2562 3005

In order to evaluate the performance based on GO terms,
we first compute the neighborhood affinityNA(a, b) between
an identified module a containing a set of proteins (Va) and
a given GO term b annotated to another set of proteins Vb:
NA(a, b) = |Va∩Vb|2

|Va|×|Vb| . If NA(a, b) > ω, then the mod-
ule a and the GO term b are considered to be a match at
the level of ω. Let C = {c1, c2, ..., ck} denote the identi-
fied modules and G = {g1, g2, ..., gl} denote the selected GO
terms. We can calculate the number of predicted modules
that match at least one GO term, denoted by Ncp: NGO

cp =
| {ci ∈ C|NA(ci, gj) > ω,∃gj ∈ G} |. Similarly, we can get
the number of GO terms that match at least one identified
module Ncb: NGO

cg = | {gi ∈ G|NA(ci, gj) > ω,∃ci ∈ C} |.
In this paper, we set ω = 0.2 as in [12]. Based on these
numbers, we can further compute the precision and recall:

precision =
NGO

cp

|C| , recall =
NGO

cg

|G| . The final F -measure [12]
for performance evaluation is the harmonic mean of precision
and recall: F = 2× precision× recall/(precision + recall).
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Similarly, F -measure of KOG categories can be com-
puted as following. Given 25 KOG categories KOG =
{kog1, ..., kog25} and C = {c1, ..., ck}, let Tij indicate the
number of proteins annotated by the ith KOG category in the
jth module. We consider a match between a given module
and any specific KOG category if the majority of the proteins
in the module are annotated by that KOG category. Math-
ematically, we have NKOG

cp = | {cj ∈ C | Tij > |cj |/2} |,
NKOG

cg = | {kogi ∈ KOG | Tij > |cj |/2} |.The precision

and recall can be computed by precision =
NKOG

cp

|C| , recall =

NKOG
cg

|KOG| .

4.2. Comparison with Other Blockmodel Algorithms
We compare our method with two state-of-the-art blockmodel
module identification algorithms—PG [10] and GS [5], which
are representative open source methods so that we can have a
fair and objective comparison. Both PG and GS are hierar-
chical bottom-up algorithms, which do not have tuning pa-
rameters while the number of modules k, which controls the
module granularity, is the only parameter in our algorithm.
We can obtain fine-grained modules with large k and coarse-
grained modules when k is small. In order to demonstrate
that the number of modules k has little influence on the per-
formance of our algorithms, we compare both coarse-grained
and fine-grained results from our method with the results ob-
tained by PG and GS.

Table 2. Performance comparison for the Sce PPI network
Method #modules coverage NGO

cp NGO
cg NKOG

cp NKOG
cg

Ours (400) 207 3862 58 144 42 15
Ours (900) 376 3431 87 187 73 17
PG 314 2076 21 34 30 14
GS 370 1645 4 6 36 12

Tables 2 and 3 give the detailed comparative results of the
three methods in the Sce PPI network and the Hsa PPI net-
work, respectively. For the Sce PPI network, we set k = 400
to get coarse-grained modules and k = 900 for fine-grained
modules. For the Hsa PPI network, we set k = 800 to get
coarse-grained modules and k = 1700 for fine-grained mod-
ules. For each method, we have listed the number of modules
discovered (# modules, which contain at least 3 proteins), the
number of proteins covered by legitimate modules (coverage),
NGO

cp , and NGO
cg . We also have listed NKOG

cp and NKOG
cg for

the evaluation based on KOG categories.

Table 3. Results comparison in the Hsa PPI network
Method #modules coverage NGO

cp NGO
cg NKOG

cp NKOG
cg

Ours (800) 659 9063 116 225 39 15
Ours (1700) 874 8153 162 314 75 18
PG 806 5175 33 60 41 15
GS 1166 4717 11 18 19 7

According to GO term results from Tables 2 and 3, our
method predicts more specific GO terms (Ncp) than PG and
GS in both PPI networks. Furthermore, the GO terms found

by PG and GS are all covered by the modules detected by our
method. Our method with larger k (fine-grained) has the best
performance. However, the number of modules k does not
affect the conclusions that our method dominates PG and GS.
We observe the same trend for the evaluation based on KOG
categories in Tables 2 and 3. Our method predicts more KOG
annotated modules and covers more KOG categories than PG
and GS especially when k is large (fine-grained) for both PPI
networks. Our results are robust when we set k between the
current selected values.

Fig. 2 shows the overall comparison results of the three
blockmodel algorithms in terms of F -measures for both PPI
networks. It is obvious that our method consistently outper-
forms PG and GS in both evaluation criteria based on GO
terms and KOG categories.

Sce PPI network Hsa PPI network 
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Fig. 2. Performance comparison for three blockmodel algo-
rithms in terms of F -measures for both PPI networks.

For computational efficiency, our method depends on the
speed of computing eigenvectors of the matrix W . On a stan-
dard desktop with 2.4GHz CPU and 6GB RAM, the compu-
tational time of our algorithm is competitive to PG and GS.
Take the Sce PPI network for example, both PG and GS fin-
ish in around one minute and our algorithm takes around two
minutes to get the results.

4.3. Module Examples
In this section, we illustrate several modules identified by
our method. Fig. 3 illustrates two induced subnetworks from
the Sce PPI network. All these modules in the subnetworks
are statistically significantly enriched with corresponding GO
terms as given in Table 4 computed by GOTermFinder [2]. As
shown in Fig. 3, our method can detect both dense and sparse
modules within which proteins have similar interaction pat-
terns.

Fig. 4 illustrates two induced subnetworks from the Hsa
PPI network. Again, the identified modules based on their
interaction patterns share statistically significant functional
similarity as annotated by GO terms as shown in Table 5.

5. CONCLUSIONS
In this paper, we propose a new approach to solve block-
model module identification in PPI networks based on ran-
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Fig. 3. Two subnetworks with modules detected by our
method in the Sce network. Each node is annotated by its
gene name.

Table 4. GO enrichment information of modules in Fig. 3
Modules Enriched GO terms GO level p-value

A proteasome core complex [+3, -1] 6.42e-21
B proteasome complex [+3, -1] 4.30e-32
C proteasome regulatory particle [+3, -1] 3.81e-9
D TRAPP complex [+5, 0] 1.73e-16
E TRAPP complex [+5, 0] 1.00e-7
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Fig. 4. Two subnetworks with modules detected by our
method in the Hsa network. Each node is annotated by its
gene name.

Table 5. GO enrichment information of modules in Fig. 4
Modules Enriched GO terms GO level p-value

A transforming growth factor beta [+7, -1] 4.30e-7
B hemoglobin biosynthetic process [+5, 0] 6.51e-5
C transmembrane receptor protein serine [+6, -1] 9.03e-9
D fibroblast growth factor [+4, 0] 1.15e-7
E transforming growth factor [+7, -1] 7.06e-8
F ribonuclease P activity [+7, 0] 1.52e-18
G ribonuclease P activity [+7, 0] 2.86e-8

dom walk on graphs. The experimental results have proven
that our method is superior to other existing state-of-the-art
blockmodel algorithms. Furthermore, we have demonstrated
that our method can identify biologically meaningful mod-
ules, specifically these with a sparse modular structure, which

have important cellular functionalities.
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