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ABSTRACT

Subspace-based methods have been effectively used to esti-

mate multi-input/multi-output, linear-time-invariant systems

from noisy spectrum samples. In these methods, a critical step

is splitting of two invariant subspaces associated with causal

and non-causal eigenvalues of some structured matrices built

from spectrum measurements via singular-value decomposi-

tion in order to determine model order. Mirror image sym-

metry with respect to the unit circle between the eigenvalue

sets of the invariant spaces, required by these algorithms, is

lost due to low signal-to-noise ratio, unmodelled dynamics,

and insufficient amount of data. Consequently, the choice of

model order is not straightforward. In this paper, we pro-

pose a robust model order selection scheme based on regu-

larized nuclear norm optimization in combination with a re-

cent subspace algorithm, which uses non-uniformly spaced,

in frequencies, spectrum measurements. A simulation exam-

ple shows the effectiveness of the proposed scheme to large

amplitude noise over short data records. Then, the proposed

scheme is used to design a linear-shape filter for random road

excitations.

Index Terms— spectrum estimation, subspace method,

nuclear norm, frequency-domain

1. INTRODUCTION

Subspace methods are popular to obtain low order state-space

models of multi-input/multi-output, linear-time-invariant sys-

tems from noise corrupted time or frequency-domain mea-

surements. There is an extensive literature on the topic, and

the reader is referred to the monograph [1] for a review of its

foundations and engineering applications.

The focus of this paper is the estimation of power-spectral

density matrix from noise corrupted spectrum samples at non-

uniformly spaced frequencies. In [2], a subspace-based iden-

tification algorithm was presented. The main idea behind

this algorithm is that the range space of a matrix built from

frequency-shifted and weighted spectrum samples is exactly

the linear span of the extended observability matrix associated

with causal and anti-causal components of the power-spectral

density matrix in a given state-space realization.

The algorithms proposed in [3, 4] use spectrum measure-

ments on uniform grids of frequencies. Furthermore, the ma-

trix used to extract the observability range space has a Han-

kel structure and it is obtained by the inverse discrete-Fourier

transform directly from spectrum samples. Under some mild

noise assumptions, these algorithms are consistent. An exten-

sion to the irregularly spaced frequencies case was reported

in [2] where the consistency holds only if corruptions in the

measurements have a known bounded covariance function.

In these algorithms, model order is determined by inspect-

ing singular values of a particular matrix used to extract the

observability range space. If n is the true order, then the 2n
most significant singular values and the corresponding left

and right singular vectors have to be retained in order to re-

trieve the observability range space. Implicit in this process

is the assumption that there exists a mirror image symme-

try with respect to the unit circle between the eigenvalue sets

of the causal and the anti-causal invariant spaces of a state-

transition matrix. Under this assumption, causal eigenvalues

can be obtained by a Jordan decomposition [2, 3, 4].

When the signal-to-noise ratio is low, the true spectrum

is more complex than the assumed one, and when the data

record is short, the singular-value decomposition step is in-

conclusive since the assumed symmetry relation between the

eigenvalues of the invariant spaces does not hold. A two-stage

identification algorithm was proposed in [5]. The first stage

of this algorithm provides an initial estimate to a parametric

optimization problem of the second stage by using an asymp-

totic form of the subspace identification algorithm proposed

in [3]. The minimum-phase property is guaranteed in the sec-

ond stage via the solution of a conic linear programming prob-

lem. This scheme avoids the need to carry out the numerically

sensitive split in [2, 3, 4].

Nuclear norm optimization methods for structured low-

rank matrix approximation have been discussed in several re-

cent papers on system identification [6, 7, 8]. The nuclear

norm of a matrix-valued function as a convex heuristic for

minimizing its rank was first proposed in [6]. Minimum nu-

clear norm solutions often have low rank and in certain appli-

cations, for example, low-rank matrix completion problems,

the quality of the heuristic can be demonstrated analytically

[9]. This approach preserves linear structure in matrix ap-

proximation unlike the singular-value decomposition. Con-

vex constraints or regularization terms in the cost function are

easily accommodated in this framework. These methods have

been primarily developed for Hankel structured low-rank ap-
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proximation problems in time-domain settings. An exten-

sion to frequency-domain was recently made in [7]. In this

work, the subspace algorithm developed in [10] to identify

multivariable systems from measured frequency response at

uniformly spaced frequencies was re-examined from a model

validation perspective using a nuclear norm heuristic.

The contents of this paper is as follows. In Section 2,

power spectrum estimation in frequency-domain via the algo-

rithm proposed in [2] is reviewed. In Section 3, a variation of

this algorithm based on the regularized nuclear norm heuris-

tic is presented. In Section 4, first a simulation example is

used to demonstrate that the proposed scheme is effective in

determining model orders over short data lengths and robust

to noise. Then, in an application study, the proposed scheme

is used to design a linear-shape filter for random road excita-

tions. Section 5 concludes the paper.

2. POWER SPECTRUM ESTIMATION IN

FREQUENCY-DOMAIN BY SUBSPACE METHODS

Suppose we are given N noisy samples Sk ∈ C
m×m of the

power spectrum S(z) of a linear-time-invariant discrete-time

system with m-inputs and m-outputs evaluated at N points

on the unit circle:

Sk = S(ejθk) + ηk, k = 1, 2, · · · , N (1)

and would like to estimate Ĝ(z) = Ĉ(zI − Â)−1B̂+ D̂ such

that the estimated spectrum Ŝ(z) = Ĝ(z)ĜT (z−1) evaluated

at ejθk is as close to Sk as possible for all k.

The transfer function Ĝ(z), called the spectral factor of

S(z), is required to meet additional criteria. Among them is

the absence of poles and zeros outside the open unit disk. De-

termination of a suitable model order, in particular the lowest

possible one, is also part of the estimation problem. Under

mild noise and system assumptions, the estimated spectrum

should also converge to the true spectrum as N → ∞ when

the true spectrum is in the model class. Subspace algorithms

with these properties have been proposed [2, 4].

We will briefly outline the steps of the subspace algorithm

introduced in [2] relevant to our discussion. Let {A,B,C,D}
be minimal realization of a square, strictly minimum-phase

transfer function matrix G(z) with McMillan degree n. We

assume that all the eigenvalues of A are nonzero and distinct.

The identification algorithms in [2, 3, 4] begin by observ-

ing that a power spectrum can be written in terms of the so-

called spectral summand H(z) = C(zIn − A)−1F + E
2

and

its conjugate transpose as S(z) = H(z) + HT (z−1) for a

symmetric E ∈ R
m×m, reducing the problem to identifying

a spectral summand directly from the spectrum samples.

Let p be any fixed integer parameter satisfying p > 2n.

From the data, form the matrices

ŜC =
1√
N







S1 · · · SN

...
. . .

...

zp−1

1
S1 · · · zp−1

N SN






, (2)

WC =
1√
N







1 · · · 1
...

. . .
...

zp−1

1
· · · zp−1

N






⊗ Im,

Ŝ = [Re(ŜC) Im(ŜC)], (3)

W = [Re(WC) Im(WC)]

where zk = ejθk , k = 1, 2, · · · , N . The extended observabil-

ity matrix for H(z) + zp−1HT (z−1) is defined by

Op =







C FT (AT )p−1

...
...

CAp−1 FT






.

Let W⊥ = I2mN −WT (WWT )−1W .

When the spectrum measurements are noise-free, the fre-

quencies are distinct, and the number of the frequencies sat-

isfies N ≥ (p/2) + n + 1, the range space of ŜW⊥ equals

to the range of Op [2]. Thus, within a similarity transforma-

tion, the matrices C and F of H(z) can be determined from

a singular-value decomposition of ŜW⊥. A numerically effi-

cient way of forming ŜW⊥ is to use the QR-factorization:

[ W
Ŝ

]

=

[

R11 0
R21 R22

] [

QT
1

QT
2

]

. (4)

Then, ŜW⊥ = R22Q
T
2 and it suffices to use R22 in the

singular-value decomposition. Hence, R22 = ŜQ2.

Let Γ be a given block-diagonal positive-definite matrix

Γ =







Γ1 · · · 0
...

. . .
...

0 · · · ΓN







with Γk ∈ R
m×m, k = 1, · · · , N . By the Cholesky decom-

position, find a matrix Ψ ∈ R
pm×pm satisfying

ΨΨT = Re(WCΓWH
C ). (5)

The square-root factor Ψ is used in [2] as a weight matrix.

More precisely, the singular-value decomposition is applied

to Ψ−1R22. See [2] for the details and the outline of the al-

gorithm. Methods to estimate B and D from {A,C,E, F}
which guarantee positive-realness of the estimated spectrum

are discussed in [2] and the references therein. The algorithm

proposed in [2] is strongly consistent if ηk is either zero or

a zero-mean complex white-noise process with a known co-

variance function [2]. In the former case, any positive-definite

2
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sequence Γk, k = 1, · · · , N can be chosen, and in the latter

case, the covariance function of the noise process must satisfy

E

[

Re ηk
Im ηk

]

[Re ηTs Im ηTs ] =
1

2

[

Γk 0
0 Γk

]

δks

and the fourth-order moments be bounded: E‖ηk‖4F < Cη .

When the noise covariance function is known and as above,

by pre and post multiplying Ŝ with Ψ−1 and Q2, we obtain a

matrix whose range space coincides with the range space of

Op. Both Ψ−1ŜQ2 and Ψ−1ŜW⊥ contain the same observ-

ability range information; but, the former is preferable since

its column size, and as a result, computing time to perform the

singular-value decomposition remain constant as N grows.

The model order is determined by inspecting the singular

values of Ψ−1ŜQ2 in its SVD and an estimate of A in the

Jordan form is obtained from the Jordan decomposition of a

matrix, which is similar to

[

A 0
0 (AT )−1

]

(6)

when the data (1) are noise-free and have been generated by

the true system. Due to insufficient amount of data, noise,

and undermodelling, the presumed mirror image symmetry

between the eigenvalues of A and (AT )−1 in (6) may be de-

stroyed. The nuclear norm minimization of a corrupted sparse

signal is known to suppress the singular values originating

from the corruptions while maintaining the singular values of

the sparse signal. The objective of this paper is to propose a

new splitting procedure based on the nuclear norm minimiza-

tion that is insensitive to noise and undermodelling.

3. FREQUENCY-DOMAIN SPECTRUM

ESTIMATION BY REGULARIZED NUCLEAR NORM

OPTIMIZATION

The key step in the subspace algorithm is the extraction of

the extended observability range space Op via the SVD. Al-

though the SVD provides low-rank approximation by mini-

mizing the Frobenius norm of Ψ−1ŜQ2, it does not preserve

the structure of ŜC in (2), which is related to Ŝ via (3). More

specifically, since ŜC linearly depends on the data, the corrup-

tions η1, · · · , ηN are distributed in ŜC according to the pattern

on the right-hand side of (2). It was suggested in [8, 6] to min-

imize the nuclear norm as a heuristic for low-rank approxima-

tion problems, which can not be handled via the SVD, in par-

ticular, approximation problems with structured low rank ma-

trices and problems including additional constraints. In this

section, we will present a variation of the subspace method in

Section 2 based on the regularized nuclear norm heuristic.

Decompose the spectrum samples as Sk = S′

k+S′′

k where

S′

k = 1

2
(Sk + S̄T

k ) and S′′

k = 1

2
(Sk − S̄T

k ) for k = 1, · · · , N .

Then, S′
1, · · · , S′

N are Hermitian symmetric matrices and can

be stacked into a vector g ∈ R
m2N . Note that S′′

k = 0 when

ηk = 0. Omitting the skew-Hermitian parts, Ŝ may be consid-

ered as a linear parametrization of S′
1, · · · , S′

N stacked into a

parameter vector ζ ∈ R
m2N formed similarly to g. For fixed

Ψ and Q2 calculated from (4), set A(ζ) = Ψ−1ŜQ2. The

following is the basic optimization problem:

minimize ‖A(ζ)‖∗ +
λ

2
(ζ − g)TH(ζ − g) (7)

to be tackled in this paper where H is a diagonal matrix with

the diagonal entries formed from the sequence Γ−1

1
, · · · ,Γ−1

N

similarly to ζ, λ > 0 is a scalar weight, and the norm on

the first term is the nuclear norm defined as the sum of the

singular values. The second term is a quadratic penalty on the

difference between the measured spectrum and its low rank

approximation. Once (7) is solved, Ψ−1ŜQ2 is calculated

with the optimal ζ and the rest of the steps in [2] are followed.

The optimization problem (7) will be solved by the alter-

nating direction method of multipliers, a popular method for

large scale and distributed convex optimization [11]. It has

been demonstrated to be effective for nuclear norm optimiza-

tion problems arising in system identification and realization.

The regularized nuclear norm optimization (7) may pro-

vide accurate results when N is moderate, the Hankel singu-

lar values of the true spectral factor decay rapidly, and the

signal-to-noise ratio is not high. Under these conditions, the

SVD step in the subspace algorithms has been observed to be

inconclusive. Besides, the SVD does not respect the structure

of Ψ−1ŜQ2 unlike the explicit parametrization A(ζ) used in

(7). Numerous studies in the literature have demonstrated that

switching to the nuclear norm enforces a sharp transition to

a low-rank approximant, thereby making the choice of the

model order easier. The purpose of the current paper is to

observe a similar behavior.

3.1. Determination of λ

The measurements (1) can be divided into two disjoint sets

by putting the measurements and the frequencies with even

indices into the estimation data set Λe and the rest into the

validation data set Λv. For each λ > 0, the spectral estimate

denoted by Ŝλ(z) is computed using Λe and its performance

is evaluated by computing the quadratic fit error on Λv. Then,

λ is determined by finding the best value of the quadratic fit

error, say for 50 logarithmically-spaced values of λ in the in-

terval 10−3 to 103. This scheme was suggested in [8] to use

in the time-domain subspace identification algorithms.

4. EXAMPLES

In this section, we use a simulation example to evaluate the

regularized nuclear norm heuristic. The second example is

concerned with the identification of road spectra.
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4.1. Simulation example

Let the true system G(z) be a fourth-order system described

by the state-space model [4]:

A =









0.8876 0.4494 0 0
−0.4494 0.7978 0 0

0 0 −0.6129 0.0645
0 0 −6.4516 −0.7419









,

B = [0.2247 0.8989 0.0323 0.1290]T ,

C = [0.4719 0.1124 9.6774 1.6129], D = 0.9626.

Assume that the corruptions in (1) are given as

ηk = ε
0.2z2k − 0.0904zk + 0.1839

z2k − 1.1111zk + 0.8520
νk

where ε is the noise amplitude, νk are zero-mean, unit-variance,

independent, identically distributed complex normal random

variables, and θk, k = 1, · · · , N are selected randomly and

independently from the intervals [π(k − 1)/N, πk/N ].
In Figure 1, the singular values of Ψ−1ŜQ2 for Monte

Carlo simulations of the subspace algorithm and (7) over 100
noise realizations with λ = 1 (determined by the procedure in

subsection 3.1), ε = 10, N = 250, and p = 125 are plotted.

Observe that the singular values with indices larger than 4 are

mixed in the subspace algorithm whereas the two bands con-

taining the first 8 largest singular values are separated from

the rest in the regularized nuclear norm heuristic. This mix-

ing influences the eigenvalue distribution shown in Figure 2.

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

10
1

Singular value index

Fig. 1. Monte Carlo simulations showing the singular values of

Ψ
−1ŜQ2: ”o” subspace algorithm; ”x” (7).

In Table 1, Monte Carlo simulations comparing the av-

erage value of the quadratic errors over 100 noise realiza-

tions are shown. The effectiveness of the proposed scheme

is clearly visible for all ε ≥ 1 even for such a small N .

4.2. Identification of road spectra

In this subsection, we consider a practical application of the

regularized nuclear nuclear norm optimization. In Figure 3,
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Fig. 2. Monte Carlo simulations showing the maximum modulus

eigenvalues of Â for the subspace algorithm (left) and (7) (right).

The maximum modulus eigenvalue of A are shown by a circle.

Table 1. Monte Carlo simulations over 100 noise realizations

comparing ‖Ŝ − S‖m,2 for the subspace algorithm and (7).

ε 0.1 1 5 10 15

Subspace 0.0066 0.0662 0.3499 1.5691 3.1876

Heuristic 0.0055 0.0547 0.2723 0.5543 1.2929

the spectral density of a typical road and its split power law

approximation [12]:

Sc(2πΩ) =

{

γ|Ω/Ω0|−2δ1 , 0 < |Ω| < Ω0;
γ|Ω/Ω0|−2δ2 , Ω0 ≤ |Ω| < ∞

obtained by trial and error for γ = 0.76× 10−5 m2/cycle/m,

Ω0 = 0.15708 cycles/m, δ1 = 1.6, and δ2 = 1.1 are plotted.

In the figure, we also show the integrated white noise approx-

imation to the data: γ|Ω/Ω0|−2, which is commonly used in

the stochastic road modeling studies. Clearly, the fit by the

integrated white-noise is rather poor; in particular at the fre-

quencies below Ω0 and the problem with the split power ap-

proximation is that it can not be generated by rational linear

shape-filters. Hence, it is not suitable for simulating stochas-

tic response of a vehicle. Besides, it is unbounded at Ω = 0.

We seek a low order linear-shape filter whose output spec-

trum matches the spectral data plotted in Figure ?? as closely

as possible when driven by white noise. In Figure 4, the road

spectra estimated by the subspace method and the regularized

nuclear norm optimization scheme are plotted. They show

that the road spectrum can accurately be modeled as the out-

puts of rational linear-shape filters driven by white noise. In

particular, the shape filter designed by the proposed scheme

is more accurate than the shape filter designed by the algo-

rithm in [2]; yet, its complexity is less. In the Cholesky de-

composition, Sk was substituted in place of Γk for all k. A

linear-shape filter can then be used, for example, to study the

response of the vehicle to random road inputs [13].
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Fig. 3. The road power spectrum [12] and its approximate modeling

by the split power law and the integrated white noise.
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Fig. 4. The spectral data and its modeling by rational spectra: (*)

the road data; (-.) the 10
th order model estimated by the subspace

algorithm; (-) the 6
th order model estimated by (7).

5. CONCLUSIONS

In this paper, we studied identification of multi-input/multi-

output, discrete-time, linear-time-invariant systems by a re-

cent subspace algorithm from spectrum measurements at ir-

regularly spaced frequencies. A numerically sensitive step in

this algorithm and other subspace algorithms was the split-

ting of the invariant subspaces associated with the causal and

anti-causal components of the power spectrum to determine

the model order. To avoid this step, we proposed a robust

model order selection criterion based on the regularized nu-

clear norm optimization. A numerical example showed the

effectiveness of the proposed scheme to large amplitude noise

over short data records. In an application study, the proposed

scheme was used to design a linear-shape filter for random

road excitations.
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