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ABSTRACT
This paper presents an image prior based on soft morpholog-
ical filters and its application to image recovery. In morpho-
logical image processing, a gray-scale image is represented
as a subset in the three dimensional space, which is spanned
by spatial and intensity axes. The image is approximated as
an union of the structuring elements in this space. In this
paper, this morphological image model is introduced to an
image prior for image recovery problem. With the proposed
image prior, the image is recovered as an image that has no
noise component that is eliminated by the opening and clos-
ing, which are basic operations of the morphological image
processing. In our study, the closing and opening are respec-
tively approximated as soft closing and soft opening with re-
laxed max and min functions in order to improve the noise
robustness. Several properties of the proposed prior with the
soft morphology are shown. In recovery experiments, image
denoising and deblurring with the proposed prior are demon-
strated. The comparison of the proposed prior with the prior
based on the intensity differences are also shown.

Index Terms— Mathematical morphology, regulariza-
tion, image recovery, image prior, denoising

1. INTRODUCTION
Image recovery is a problem that estimates the original image
from the degraded observation. In the image recovery, an ob-
served image y is supposed to be obtained via y = Hg + e,
where H is a degradation matrix, g and e are the original
image vector and additive noise, respectively. Assuming that
the noise e is a Gaussian noise, the estimation of the original
image is obtained from the regularization[1] as

ĝ ∈ argmin
g

1

2
‖ y −Hg ‖22 +λP (g) . (1)

For the image prior term P (g), total variation (TV)[2][3] and
its variants have been widely applied to image recovery. In
these regularization, the local smoothness of images is as-
sumed and is measured by the sum of the absolute gradients
of intensity surface of the image. In the recovery with a spar-
sity prior[4], the recovered image is replaced with a linear
combination of atoms in a dictionary A as g = Ac. For re-
covery, the sparsity prior is imposed on the coefficient vector

c. In this image prior, the linear synthesis image model is
employed for image representation. On the other hand, non-
linear image models are utilized in the area of mathematical
morphology[5][6][7].

In morphological image processing, a gray-scale image
is transformed into an umbra of the three-dimensional space
that is spanned by spatial and intensity axes. The gray-scale
morphological operations are interpreted as set operations be-
tween a subset of the image and a set of structuring elements
(SE). During the morphological image processing, an image
is assumed to be a union of the set of SEs that are translated
in the three dimensional space. In image opening, which is
one of the morphological filters, an image is approximated
by a subset of the umbra, which is a union of the set of the
translated SEs. In the opening, the peaks and ridges of the in-
tensity surface, which cannot include the translated SEs, are
eliminates. On contrary, in image closing, the complement of
the image is approximated by a union of the SEs. The valleys
and pits, which cannot include the complements of the SEs,
are eliminated by closing. Therefore, the pair of the opening
and closing is used for image denoising, typically impulsive
noises[7]. In denosing by the morphological filters, the orig-
inal image and its complement are assumed to be a union of
the translated SEs.

In this paper, a novel image prior based on the assumption
of the morphological filtering is proposed. Our image prior is
defined from the assumption of the opening and closing in-
variance. The image is recovered with the assumption that
the original image has no pits and peaks that can include the
SEs. In our approach, the soft-morphology filters that are ap-
proximations of the morphological filter are employed for the
image prior in order to improve noise sensitivity. By using the
soft morphological operations, the local smoothness can also
be imposed on the recovered image.

In the next section, we briefly explain the morpholog-
ical filters. The soft-morphological filters are introduced
by replacing the max and min function with log-sum-exp
functions[8]. Some properties of the soft morphology is also
shown. In Sect. 3, the image prior using the soft morphology
is presented. In Sect. 4, the proposed morphological prior is
compared with the total subset variation (TSV) prior[3] that
is one of the extension of TV prior in recovery experiments.
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2. SOFT MORPHOLOGICAL FILTERS WITH
LOG-SUM-EXP FUNCTIONS

The morphological filters are constructed from two opera-
tors, dilation and erosion[5][6][7]. Let I be a set of two-
dimensional coordinates of the image. Each element in I
is a two-dimensional vector, whose two coordinates are inte-
gers. fx denotes the intensity of an image f at the coordinate
x ∈ I. The dilation and erosion of the gray-scale image f are
respectively defined as

Ds ◦ fx =
∨
y∈A

fx+y + sy (2)

and
Es ◦ fx =

∧
y∈A

fx−y − sy, (3)

where
∨

y∈A and
∧

y∈A denote the maximum and minimum
value of the elements with respect to the set of A, respectively.
{sx}x∈A is the SE for the morphological filtering. The mor-
phological opening obtains an approximation of the image in
the form of the dilation in (2). For image opening, the dilation
is applied to the eroded image of f as follows:

Os ◦ fx = Ds ◦ Es ◦ fx. (4)

Obviously, the dilated images are invariant with respect to the
opening. The opened image always satisfies

fx ≥ Os ◦ fx. (5)

This property is referred to as the antiextensivity of the open-
ing. The closing, which is the complementary operation of
the opening, is realized as

Cs ◦ fx = Es ◦Ds ◦ fx. (6)

The complement of the closed image includes the original im-
age. Therefore, the closed image always satisfies

fx ≤ Cs ◦ fx. (7)

The eroded images are invariant with respect to the closing.
The opening can eliminate only positive noise components,
which cannot include SEs. In contrast, the closing can elimi-
nate only negative noise components. The results of the open-
ing and closing are hence sensitive for the noise which has
both of the negative and positive components. In order to
reduce the noise sensitivity of the morphological processing,
the soft morphology operators[9][10] have been proposed. In
these approach, the max and min functions are relaxed by
weighted statistic[10], soft max and min functions[11]. In this
study, the soft morphological filters are simply constructed
by replacing the max and min functions with log-sum-exp
functions[8]. By using the log-sum-exp function, we have
approximations of the dilation (2) and erosion (3) as

D̂s ◦ gx =
1

p
log

∑
y∈A

exp (p (gx+y + sy)) (8)
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Fig. 1. Differences between closing and opening at various
approximation parameters.

and

Ês ◦ gx = −1

p
log

∑
y∈A

exp (−p (gx−y − sy)) , (9)

where p > 0 is the parameter that specifies the bounds of the
approximation error,

0 ≤ D̂s ◦ fx −Ds ◦ fx ≤ 1

p
logN (10)

and
−1

p
logN ≤ Ês ◦ fx − Es ◦ fx ≤ 0 (11)

where N is the number of the elements in A. When p → ∞,
the approximations converge to true erosion and true dilation.
The soft opening and soft closing can also be constructed as
Ôs ◦ fx and Ôs ◦ fx by replacing the erosion and dilation
with the soft erosion and soft dilation. For p → ∞, the soft
opening and soft closing converge to true opening and true
closing, respectively. For p → 0, the soft opening and soft
closing converge to

lim
p→0

Ô ◦ fx = lim
p→0

Ĉ ◦ fx

=
1

N2

∑
y∈A

∑
z∈A

fx+y−z − sz + sy (12)

along with the L’Hôpotal’s rule. The soft opening and soft
closing, of which max and min are approximated with log-
sum-exp functions, are continuously differentiable functions.
The gradient based minimization can be applied to the func-
tion that includes the soft opening and soft closing. We apply
these soft morphological filters for image recovery problem
in (1).

3. IMAGE PRIOR USING SOFT-MORPHOLOGICAL
FILTERS

In this section, we propose the image prior for the recovery
problem (1) with morphological filter invariance. We assume

2
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that the image g can be represented as a union of the trans-
lated SEs in the form of (2). If this assumption is held , the
image g is invariant with the opening. Under this assumption,
the prior term is defined as the absolute difference between
the image and its opened version as

PO (g) =
∑
x∈I

|gx −Os ◦ gx| =
∑
x∈I

gx −Os ◦ gx. (13)

By substituting the soft opening (13) and supposing every el-
ements of the SE are zero, the opening invariance prior can be
approximated as

P̂O (g) =

− 1

p

∑
x∈I

log
∑
y∈A

1

1 +
∑

z∈A,z 6=y exp {p (fx−y+z − fx)}
.

(14)

This function monotonically increases along with the incre-
ment of the intensity difference fx−y+z − fx. Closing invari-
ance can be also imposed on the image recovery. The closing
invariance prior is defined as

PC (g) =
∑
x∈I

|gx − Cs ◦ gx| =
∑
x∈I

Cs ◦ gx − gx. (15)

With this prior, the image is recovered under the assumption
that the complementary of the image is a union of the trans-
lated SEs. The approximation of PC is given by the soft clos-
ing as

P̂C (g) =

− 1

p

∑
x∈I

log
∑
y∈A

1

1 +
∑

z∈A,z6=y exp {p (fx − fx+y−z)}
(16)

where the elements of the SE are supposed to be zero. The
soft closing prior monotonically increases along with the in-
crement of the intensity difference fx−fx+y−z. In this study,
an image prior is proposed by adding two prior according to
the closing and opening invariance as

P̂OC (g) = P̂O (g)+ P̂C (g) =
∑
x∈I

Ĉs ◦gx− Ôs ◦gx. (17)

Hereinafter, we refer to this prior as the close-open invariance
prior. For p → ∞, this prior is defined as the sum of the dif-
ferences between the closing and the opening of the image.
In this case of the image recovery (1) with the close-open in-
variance, the image is assumed to be an image that has no
noise component that is eliminated by the opening and clos-
ing. For bounded p, this prior increases along with the inten-
sity differences between the pixel and each surrounding pixel
as seen in (15) and (17). For p → 0, both filters converge
to a linear filter in (13) and the prior term POC converges to

zero. In Fig. 1, examples of the difference between the clos-
ing and opening for a one-dimensional signal are shown. In
these examples, the SE spans within two consecutive samples
as {s0, s1} = {0, 0}. The input signal for the morphologi-
cal filters is shown in the top of the left column of Fig. 1.
The signal consists of two periods, of which first period is de-
graded by a random noise. The second period of the signal is
invariant with respect to closing and opening with the SE. In
the second row of the left column, POC , which is difference
between the closing and opening is shown. The amplitude of
POC increases due to the noise components in the first pe-
riod. For the second period, POC is zero, since the signal
holds the opening and closing invariance. In the others, P̂OC

with various approximation parameters p are shown. When
p = 1, the differences between the approximation and POC

are relatively small. At p = 0.1, P̂OC responds to the in-
tensity differences between consecutive two samples in the
second period. Along with the decrement of p, the amplitude
of P̂OC tends to be proportional to the absolutes of the inten-
sity differences. As seen in these example, the approximated
close-open invariance prior can impose the penalty on the in-
tensity variations and the structure of the signal according to
the closing and opening invariance simultaneously with ap-
propriate parameter p.

By the way, the total subset variation (TSV) prior, which
is an extension of TV prior, has been proposed in Ref. [3].
The TSV is defined from the difference between the maxi-
mum and minimum of the local clique. Therefore, the TSV
can be represented by the notations of the mathematical mor-
phology as

PTSV (g) =
∑
x∈I

{Ds ◦ gx − Es ◦ gx}q (18)

where the all elements of the SE are zero. When q = 1 and
the SE is defined within four neighbors, the TSV is equiva-
lent of the standard TV[3]. In the proposed prior, the dila-
tion and erosion of the TSV are respectively replaced with
the opening and closing. In the recovery with the TSV, the
prior impose the penalty on the differences of the intensities
within the clique that is specified by the SE. With the close-
open invariance prior, the penalty is imposed on the structure
of the image according to the opening and closing invariance.
The comparison the TSV with the proposed penalty is demon-
strated in the next section.

4. IMAGE RECOVERY EXAMPLES
In this section, we provide several examples of the image re-
covery with the close-open invariance prior. For our prior, im-
ages and its complementaries are supposed to be a union of
the translated SEs. Images that can be recovered with the pro-
posed prior are limited by the image model that is employed
for the morphological image processing. Under this limita-
tion, we employ three images shown in Fig. 2 for recovery
examples. The QR code shown in Fig. 2(a) is exactly opening

3
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(a) (b) (c)

Fig. 2. Original images, (a) QR, (b) Cartoon and (c) Finger-
print.

Table 1. MSEs of the denoised images by the close-open
invariance prior and TSV.

Image Noise Var. C-O Inv. C-O Inv. TSV
σ2 p = 1 p = 0.1

QR 500 99 54 99
1000 208 78 195
2000 429 156 387
4000 776 394 723

Cartoon 500 227 151 155
1000 339 236 264
2000 518 368 443
4000 840 528 697

Fingerprint 500 224 140 155
1000 326 208 264
2000 501 286 443
4000 794 467 697

and closing invariant with the SE that can be included in each
square block. Fig. 2(b) and (c) consist of lines that can be ap-
proximated as a union of the translated SEs, of which size is
smaller than the width of the lines. For these images, the SE
is specified as 3× 3 flat square. In order to solve the problem
(1), we employ limited memory BFGS (L-BFGS) [11] that is
one of quasi newton methods. The objective function with the
close-open invariance prior is not convex. The iteration of the
minimization converges to a saddle point or local minimum.
The results of the recovery depend on the initial image for the
minimization. We specify the initial images as the observed
images for all examples.

First, several examples of the denoising are demonstrated.
For image denoising, the degradation matrix H is an identity
matrix. The degraded images are generated by adding the
Gaussian noise with the variance σ2 to the original images.
The intensities of pixels that exceed the maximum intensity
level 255 are rounded to 255. For comparison, the results ob-
tained by the TSV prior are also shown. In the regularization
(1), the parameter λ has to be specified. For the purpose of
the comparison, λ is specified to minimize the MSE for both
the TSV and the close-open invariance prior. The TSV is de-
fined with the clique that spans within 3 × 3 pixels as well
as the SE that is employed for close-open prior. TSV in (19)

(a) Noisy Image (b) TSV

(c) Close-Open invariant (d) Close-Open invariant 

p = 1, MSE: 776 p = 0.1, MSE: 394

MSE: 3314 MSE: 723

Fig. 3. Denoising results of QR. (a) Noisy image degraded by
Gaussian noise σ2 = 4, 000, (b) image recovered by TSV and
(c, d) close-open invariant prior.

(a) Noisy Image (b) TSV (c) Close-Open Invariant

p = 0.1, MSE: 528MSE: 2960 MSE: 697

(d) Noisy Image (e) TSV (f) Close-Open Invariant 

MSE: 3248 MSE: 781 p = 0.1, MSE: 584

Fig. 4. Denoising results of Cartoon and Fingerprint. (a, d)
Noisy images degraded by Gaussian noise σ2 = 4, 000, (b,
e) images recovered by TSV and (c, f) close-open invariant
prior.

has an exponential part q. Obviously, the close-open prior can
be extended with the exponential part. For comparison, q is
specified as q = 1.

MSEs (Mean Square Errors) of the denoising results are
shown in Table 1. In this table, the approximation parame-
ter p is specified as 1 and 0.1. Comparing the case of p = 1
with p = 0.1, the MSEs obtained with p = 0.1 are smaller
than the MSEs with p = 1. In Fig. 3, the denoising results
of QR are shown. With p = 1, the denoised image consists
of small blocks that are correspond to the SE and hold open-
close invariance. However, large artifacts due to the disconti-
nuities due to the blocks appear. As seen in Fig. 1, the varia-
tions of the intensity are penalized with smaller p. Therefore,
the block artifacts are well suppressed in the recovery result
Fig. 3 (d) with p = 0.1. Comparing with TSV, the close-
open invariant with p = 0.1 obtains superior results for all
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Table 2. MSEs of the deblurred images by the close-open
invariance prior and TSV.

Imega Noise Var. C-O Inv. TSV
σ2 p = 0.1

QR 50 251 241
100 387 380

Cartoon 50 377 365
100 415 405

Fingerprint 50 319 360
100 387 383

images. In Fig. 4, the results for Cartoon and Fingerprint
images are shown. Two images are not exactly close-open
invariant. Therefore, the improvements of MSE comparing
with the TSV are smaller than the QR image for smaller noise
variances. However, the significant improvements appear at
the higher noise variances.

Next, the deblurring examples are shown. In these exam-
ples, the degraded image is generated by the blurring with the
Gaussian kernel with the standard deviation 2.0 and adding
Gaussian noises with variances σ2. The results in MSEs of
the recovered image is shown in Table 2. An example of the
recovered image is shown in Fig. 5. In deblurring, the signif-
icant differences between the TSV and close-open invariant
are not observed. For deblurring, the TSV prior that suppress
the intensity variations is enough to reduce the noise compo-
nents during the recovery.

5. CONCLUSIONS

In this paper, the image prior based on the soft morphological
filters is proposed. We show some properties of the soft open-
ing and soft closing and applied to the image prior. With the
proposed prior, the image is recovered as a close-open invari-
ant image. Moreover, the intensity differences is penalized
by the proposed prior with the the approximation parameter.
In the recovery experiments, we show that the proposed prior
obtains superior results for the denoising of the images that
can be approximated as unions of the SEs comparing with the
prior based on the intensity differences.

Usually, occurrences of the Gaussian noises are not con-
sidered in the morphological image processing. In our ap-
proach, the morphological filters are utilized for the prior of
the regularization and achieve the suppression of the Gaussian
noises. It is expected that the robustness of morphological im-
age processing against Gaussian noises will be improved by
using our approach. For the proposed prior, the approxima-
tion parameter p has to be specified. In this paper, we specify
this parameter experimentally. Moreover, the recovery capa-
bility can be improved with the SE that is adopted to the im-
age structure. The parameter specification and adaptation of
the SE for specific application are also future topics.

(a) Noisy Blurred Image (b) TSV (c) Close-Open Invariance

p = 0.1, MSE: 415MSE: 778 MSE: 405

Fig. 5. Deblurring results of Cartton. (a) Degraded image
(σ2 = 100) (b) image recovered by TSV and (c) close-open
invariant prior.
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