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ABSTRACT

This paper examines a novel concept for estimating the po-
sition of a lap joint based on polarimetric scattering effects.
While the principle measurement method and setup have al-
ready been presented in [1] we focus on the associated accu-
racy limits, i.e., the Cramér-Rao lower bound (CRLB) calcu-
lation for this approach. The minimum achievable position
estimation variance is calculated for a variety of estimation
scenarios. These calculations are then validated with simula-
tions and real world measurements.

Index Terms— Accuracy, Cramér-Rao bounds, radar po-
larimetry, radar tracking, millimeter wave radar

1. INTRODUCTION

A novel concept for detecting the exact position of electri-
cally well conductive lap joints by using microwave sensors
was introduced in [1, 2]. The basic idea of this concept is to
use local polarimetric effects which occur at discontinuities
in perfectly conducting surfaces, such as edges, wedges, and
steps [3]. The polarized scattering parameters are then used
to detect the position of the discontinuity in the surface. Since
radar sensors are largely unaffected by environmental stress,
this concept is very attractive for automated welding appli-
cations. Exact knowledge of the joint’s location is important
for correct positioning of the welding head and thus also for
increasing the quality of the welding process. The best evi-
dence of the capability of a novel sensor system are the ac-
curacy limitations of the measured and estimated parameters
when using a specified measurement setup.

Therefore, our goal in this paper is to establish the ac-
curacy limits of the signal processing for detecting the po-
sition of a lap joint step by using polarimetric scattering ef-
fects. For the measurements and simulations, we used the
concept of a frequency-modulated continuous-wave (FMCW)
radar [4]. We calculated the best possible performance given
by the CRLB, which is asymptotically achieved by estimators
derived by means of the maximum likelihood (ML) principle.
We focus especially on the influence of step thickness on the
position estimation of lap joints. Further, we present a pos-
sible signal processing work-flow which practically achieves

the CRLB. The results of the CRLB calculations were veri-
fied by measurements and Monte Carlo (MC) simulations for
different scenarios.

2. MEASUREMENT AND SIMULATION SCENARIO

Fig. 1: Schematic diagram showing the target geometry and
the antenna system used to describe the simulation model and
the measurement setup.

Fig. 1 shows the basic arrangement of a polarimetric syn-
thetic aperture radar (SAR) measurement setup. The config-
uration serves as a reference for all simulation and measure-
ment scenarios described. The target consists of two metal
plates, which are assumed to be perfectly electrically conduct-
ing (PEC), arranged in a lap joint geometry.

For the antenna system, two pyramidal horn antennas
which radiate a linearly polarized field were selected. Since
we are interested in polarimetric effects, the linearly polarized
antennas must be mounted in a cross-polarized configuration.
This means that the antennas are rotated by 45◦ and −45◦,
respectively, on the rotation axis z. For the scenario it is
assumed that the plates of the lap joint are large compared
to the antenna footprints in the target plane. Hence, only a
single step is illuminated by the antenna system.

The position of the step xK is to be estimated. To gain
cross range resolution, the antenna system is moved along a
trajectory in the x-direction parallel to the target plates - a
concept known as synthetic aperture [5, 6]. The reference po-
sition of the antenna system is described by the vector rA =
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[ux, 0, zA]
T , where ux denotes the radar’s location along the

one-dimensional aperture and zA describes the height of the
antennas. Further, slant range resolution must be achieved to
separate the lap joint from other targets and interferences such
as multipath reflections. This is made possible by performing
a frequency sweep with the radar hardware, according to the
FMCW principle. The properties of the antenna system, the
FMCW radar, and the SAR parameters are listed in Tab. 1.
For the measurements the radar is moved to a position along
the synthetic aperture. Subsequently, a frequency sweep is
performed, measurements are taken, and then the radar is
repositioned and the process repeated. A two-dimensional in-
termediate frequency signal

sIF,12(kr, ux) =AIFWIF(kr, ux)e−j2krR

e−jφIF S12(ux)|kc (1)

is obtained by the radar system. The signal depends on the
position of the antennas ux and the wavenumber kr = 2πkf t

c0
,

where kf specifies the slope of the linearly increasing fre-
quency ramp and c0 stands for the propagation velocity of
the electromagnetic wave. The time sampling of (1) yields
t = nTs with the sampling interval Ts and the sampling in-
dex n = 0 . . . N − 1, where N is the number of sampling
points. The variable AIFe

−jφIF refers to the complex ampli-
tude of the target positioned at R, and WIF(kr, ux) denotes
the radiation characteristic of a bistatic cross-polarized mea-
surement. The remaining part S12(ux)|kc accounts for an am-
plitude variation based on the radiation characteristic and the
target’s shape and a phase variation based on the target’s po-
sition, at the center frequency kc. This term is particularly
important for future signal processing tasks.

Table 1: Measurement setup, FMCW, and SAR parameters
Antenna system
Antenna gain G ≈ 20 dBi

Position of the antenna system rA [ux, 0, 0.15]
T

m
Polarization angle antenna 1 ϕA1

45◦

Polarization angle antenna 2 ϕA2
−45◦

FMCW parameters
Start frequency fstart 77 GHz
Stop frequency fstop 79 GHz
Number of frequency points N 512
SAR parameters
Synthetic aperture length Lx 0.06 m
Spatial sampling interval ∆ux 1 mm
Number of spatial points Mx 60

An accurate model of the measurement scenario is created
by means of a field integral equation (IE) method which is
solved numerically by the method of moments. To reduce
the complexity of the numerical model, the IE approach is
calculated for two dimensions at the center frequency of the
sweep as explained in [1].

3. SIGNAL MODEL AND ALGORITHM

3.1. Data Preparation

This subsection explains the signal processing work-flow for
estimating the position of the lap joint. Before xK can be
estimated, the measured data has to be preprocessed. In the
measurements, the reference plane is located at the radio fre-
quency chip on the frontend. For the simulations it is more
convenient to have the reference plane in the aperture of the
antennas. Thus, the electrical length of the conductors and
the horn antenna can be interpreted as an additional phase
shift between the measurement and the simulation reference
plane. In order to have the same reference planes in the simu-
lation and the measurement, the measured data are corrected
accordingly. In the next step, the two-dimensional measured
data setX12(kr, ux) is reduced to one dimension. To this end,
X12(kr, ux) is Fourier transformed and scaled to range. The
range bin r̂max is then computed by calculating |X12(r, ux)|
and summing it over all positions ux. The bin containing
the maximum of the sum corresponds to r̂max, which cor-
responds to the dominant reflection of the lap joint. The data
set is reduced by evaluating the data at the range bin r̂max,
which yields X12,1D(ux) = X12(r̂max, ux). Fig. 2 shows
the real and imaginary part of the one-dimensional measured
data X12,1D(ux) and the simulation results S12(ux) of a lap
joint with a thickness of 10 mm normalized to the ampli-
tude of the measured signal. Measurement and simulation
are in very good agreement. The respective parameters are
listed in Tab. 1. Reducing the measured data set to one di-
mension allows the IE approach to be calculated at one fre-
quency, namely the center frequency of the radar sweep. Oth-
erwise, the simulation would have to be performed for the
whole frequency sweep, which would increase computational
and memory effort.

Fig. 2: Real and imaginary part of the measured data and the
signal model for the parameter setup listed in Tab. 1.
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3.2. Estimation

After data preprocessing, the signal X12,1D(ux) and the re-
sult from the numerical IE approach are used to estimate the
position of the lap joint. Additionally, the thickness t of the
top plate is assumed to be known. The data set is available on
an equidistant grid at

ux = mx∆ux mx = −Mx

2
,−Mx

2
+ 1, . . . ,

Mx

2
− 1, (2)

where ∆ux denotes the spatial sampling interval and Mx

defines the number of spatial samples. The measurements
are assumed to be corrupted with complex circular additive
white Gaussian noise w[mx] ∼ CN (0, σ2) with variance σ2.
Therefore, the measured data

X12,1D[mx] = S12[mx] + w[mx] (3)

comprises a sum of the deterministic signal S12[mx] and a
stochastic part w[mx]. The position of the lap joint is esti-
mated by means of a maximum likelihood estimator (MLE).
Thus, a reference signal S12,ref [mx] = S12[mx]|xK

is calcu-
lated for the known step thickness twith the numerical model.
The cost function of the MLE can be written as

J =
∑
mx

∣∣∣(X12,1D[mx]− ÃS12,ref [mx]
)∣∣∣2 , (4)

where Ã stands for the unknown complex amplitude. The
complex amplitude is estimated by a separation approach

Ã = Aejφ =
(
SH12 [mx]

∣∣
x̂K

S12 [mx]|x̂K

)−1

SH12 [mx]
∣∣
x̂K
X12,1D[mx] (5)

as described in [7, p. 194], where the superscript H denotes
the Hermitian operator. The variable S12 [mx]|x̂K

stands for
the reference signal shifted to the estimated position x̂K. Fur-
ther, (̂·) denotes that x̂K is an estimated parameter. The MLE
for estimating the lap joint position

x̂K = arg max
xK

∣∣∣∣∣∑
mx

X12,1D[mx] (S12,ref [mx])
∗

∣∣∣∣∣ (6)

can be calculated efficiently in the spectral domain by using
the shift property of the Fourier transform. This reduces the
computational effort because the model has to be calculated
with the IE only once. In this case, the MLE can also be
interpreted in the context of a time delay estimation [7, p. 192]
[8, p. 258] where the position shift x̂K (instead of the time
delay) is estimated.

4. CRLB CALCULATION OF POSITION
ESTIMATION

To assess the accuracy achieved, the CRLB (that is the mini-
mum variance achievable) of the method is calculated. First,
the elements of the Fisher information matrix [7, p. 49] are

calculated, which - for a complex Gaussian probability den-
sity function - is given by

[I(θ)]ij =
2

σ2
<


Mx
2 −1∑

mx=−Mx
2

∂S∗
12[mx, θ]

∂θi

∂S12[mx, θ]

∂θj

 .

(7)

In (7), (·)∗ denotes complex conjugation. Here, θ is the vector
of the unknown parameters

θ = [xK A φ]
T
. (8)

The variable xK denotes the position of the lap joint, andA >
0 and −π ≤ φ < π are the amplitude and the phase of the
measured signal, respectively. The superscript T describes a
matrix transposition. The signal model S12[mx] is obtained
from a numerical field simulation and not known analytically.
Therefore, the derivation in (7) is approximated by the central
difference quotient according to

∂S12[mx, θ]

∂θ
≈ S12[mx, θ + ∆θ]− S12[mx, θ −∆θ]

2∆θ
. (9)

The main diagonal elements of I−1 are the best achievable
variances of the corresponding parameter estimation, assum-
ing an unbiased estimator. Therefore, the minimum position
variance achievable is calculated by

var {x̂K} ≥
[
I(θ)−1

]
11
. (10)

5. MEASUREMENT AND SIMULATION RESULTS

5.1. Monte Carlo Simulation

Fig. 3: Standard deviations of the position estimations for
thicknesses t = {1, 2, 4} mm compared to MC simulation
results.

MC simulations were carried out to verify the CRLB in-
troduced in Section 4. The parameters of the calculations are

3
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Fig. 4: Standard deviations of the position estimations for
thicknesses t = {6, 8, 10} mm compared to MC simulation
results.

summarized in Tab. 1. Additionally, the thickness of the lap
joint was varied for t = {1, 2, 4, 6, 8, 10} mm. Furthermore,
the influence on the CRLB, depending on different aperture
widths L and different spatial sampling intervals ∆ux were
investigated and are reported here. All results were verified
with MC simulations for different σ2, and 500 realizations
for each noise level were performed to validate the algorithm.
Since the variance of the position estimation varies with the
noise power, the signal-to-noise ratio (SNR) of our signal had
to be calculated. The SNR is defined as

SNR =
Psig

σ2
. (11)

The variable Psig is the signal power, which is defined as

Psig =
1

L

∫ L
2

−L
2

S12(ux)S∗
12(ux)dux. (12)

Fig. 3 shows the standard deviation σx̂K
=
√

var (x̂K) of the
CRLB calculation and the results of the MC simulation for
t = {1, 2, 4} mm (CRLBt, MCt). Fig. 4 plots the results for
t = {6, 8, 10} mm. Both figures show that the position esti-
mation algorithm practically reaches the CRLB. Further, the
standard deviation is independent of the lap joint thickness t.
The lap joint position can be estimated with a standard de-
viation in the sub-millimeter region. The threshold level can
be identified at an SNR of−6 dB. The threshold effect occurs
below a certain level of SNR where the performance of the es-
timator significantly deviates from the CRLB. When the SNR
level is low, local minima lower than the global minimum and
local maxima higher than the global maximum can appear in
the cost function. Hence, the optimization process chooses
the wrong maximum, which results in the threshold [9, 10].
For future investigations the threshold behavior can be calcu-
lated to determine the exact SNR limit.

Fig. 5: Standard deviations of the position estimations for
different synthetic apertures L = {30, 40, 50, 60} mm com-
pared to MC simulation results.

Fig. 5 illustrates the effect of different aperture widths on
the CRLB. In the calculations, the number of spatial sam-
pling points was constant (Mx = 60), and the synthetic aper-
ture was swept from L = {30, 40, 50, 60} mm (CRLBL,
MCL). All calculations were verified with MC simulations.
The figure clearly shows that the variance increases when
shrinking the synthetic aperture. However, the standard devi-
ation of the position estimation, even for the shortest aperture
L = 30 mm, remains very low.

In the last simulation, the synthetic aperture was kept
constant at L = 60 mm, and the number of spatial sam-
pling points was swept from Mx = {60, 120, 240, 480}
(CRLBMx

, MCMx
). Fig. 6 plots the results of the calcula-

tions and MC simulations, which clearly show that increasing
the number of spatial sampling points decreases the variance
of the estimator.

5.2. Verification of CRLB

To verify the simulation results presented in Section 5.1
measurements with a lap joint of 10 mm thickness were
conducted. To this end, a vector network analyzer (VNA)
working at a center frequency of fc = 27.5 GHz with a fre-
quency bandwidth B = 2 GHz was used as a radar system.
A 27.5 GHz hardware was used in place of the obviously
preferable 77 GHz VNA for reasons of availability. A syn-
thetic aperture of L = 0.1 m with a spatial sampling interval
∆ux = 2 mm was performed. Each reported measurement
at each aperture point is based on 500 individual trials and
different SNR values, which were generated by sweeping the
output power of the VNA. Subsequently, the measured data
was reduced to one dimension as described in Section 3.1.
Prior to calculating the variance of the position estimation the
SNR had to be estimated. The noise power σ̂2 was estimated
in the spectral domain as described in [7]. Then, the signal
power P̂sig is computed by calculating the total power Ptot

4
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Fig. 6: Standard deviations of the position estimations for
different spatial sampling points Mx = {60, 120, 240, 480}
compared to MC simulation results.

and subtracting the noise power.

P̂sig =
1

L

∫ L
2

−L
2

X12(ux)X∗
12(ux)dux︸ ︷︷ ︸

Ptot

−σ̂2. (13)

Subsequently, the position estimation was carried out for all
trials and SNR levels. Fig. 7 shows the resulting standard
deviations based on the measurements and an MC simulation.
Additionally, the calculated CRLB is shown. The calculation,
the measurement, and the simulation results are in very good
agreement, which validates the calculated bound.

6. CONCLUSION

In this paper, the CRLB for a novel position estimation ap-
proach based on polarimetric scattering effects was calculated
and validated by MC simulations and measurements. The re-
sults show that the CRLBs derived hold for the position esti-
mation for the setups investigated. Our discussions and sim-
ulations examined various influences on the achievable vari-
ance and can be used to design FMCW radar-based measure-
ment scenarios for high-accuracy applications.
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