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ABSTRACT

We consider a nonlinear inverse scattering problem where
the goal is to detect breast cancer from measurements of the
scattered field that results from its interaction with a known
wave in the microwave frequency range. The modeling of the
wave-object interaction is tackled through a domain integral
representation of the electric field in a 2D-TM configuration.
The inverse problem is solved in a Bayesian framework where
the prior information is introduced via a Gauss-Markov-Potts
model. A Variational Bayesian Approximation (VBA) tech-
nique is adapted to complex valued contrast and applied to
compute the posterior estimators and reconstruct maps of both
the permittivity and conductivity. Results obtained by means
of this approach from synthetic data are compared with those
given by a deterministic contrast source inversion method.

Index Terms— Inverse scattering problem, breast cancer
detection, Gauss-Markov-Potts prior, Variational Bayesian
Approximation.

1. INTRODUCTION

In last few years, a lot of work has been devoted to the appli-
cation of microwave imaging to breast tumor detection [1, 2].
In fact, microwave imaging is an attractive alternative to X-
ray mammography for detection of breast cancers because di-
electric properties of tumors are notably different from that
of healthy biological tissues and microwaves can be used to
emphasize these differences.

Microwave tomography is a nonlinear inverse scattering
problem where the goal is to retrieve a contrast function rep-
resentative of the dielectric properties (permittivity and con-
ductivity) of an unknown object, from measurements of the
scattered field that results from its interaction with a known
interrogating (incident) wave. When the object under test is
small compared to the wavelength or is lowly contrasted with
respect to the embedding, this inverse problem can be lin-
earized in the framework of the first order weak scattering
Born or Rytov approximations [3, 4]. However, as underlined
above, it is not the case of the objects considered herein, as

contrast can be high. In the early 90’s, several determinis-
tic inversion algorithms have been developed in order to deal
with the nonlinear problem at hand in the case of microwave
imaging, through an iterative minimization of a cost func-
tional that expresses the discrepancy between the measured
scattered fields and the fields computed by means of the cur-
rent solution (the sought contrast) through a forward model
based upon two coupled integral equations that link the ob-
served scattered field to the contrast function [5, 6, 7].

Nonetheless, inverse scattering problems are known to be
ill-posed, which means that a regularization is required prior
to their resolution. Such a regularization is usually done by
introducing a priori information on the object, which is not
easy with the latter techniques as this information must be
introduced in the functional to be minimized. The Bayesian
framework allows us to take easily into account such an in-
formation. In fact, we know that the object under test is com-
posed of a finite number of different materials distributed in
compact regions, meaning that the sought image is composed
of a finite number of homogeneous area. To account for this
prior knowledge, a Gauss-Markov field with an hidden Potts
label field, denoted hereafter as Gauss-Markov-Potts model,
is proposed and a variational Bayesian approximation (VBA,
[8]) is applied to obtain an estimator of the posterior law. This
method has already been applied to optical diffraction tomog-
raphy [9]. Its performances have been compared to Monte-
Carlo Markov Chain (MCMC) methods that yield good re-
sults but are very costly in terms of computation time and
technical difficulties [10, 11]. The originality of this work is
to apply this approach to breast cancer detection where, con-
trarily to the case treated in [9], the unknown contrast is com-
plex valued because biological media are lossy, which means
that both permittivity and conductivity images have to be re-
constructed. Hence the proposed Bayesian approach and the
VBA method are adapted to the case of complex valued con-
trasts by assuming that permittivity and conductivity have the
same segmentation, i.e. the same hidden field, but are inde-
pendent conditionally to this hidden variable.

The rest of this paper is organized ad follows: section 2
presents the forward modeling of the problem. Then the
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Bayesian framework is presented in section 3 and the vari-
ational approach is discussed in section 4. The method is
applied to breast tumor detection in section 5 and compared
to contrast source inversion method (CSI, [7]). Finally, some
conclusions and perspectives are given in section 6.

2. FORWARD PROBLEM

We consider a 2-D configuration in a transverse magnetic po-
larization case where the object under test is supposed to be
cylindrical, of infinite extension along the z axis and illumi-
nated by a line source whose location can be varied and that
operates at several discrete frequencies in the range 0.5 GHz
- 3 GHz. This source generates an incident electric field Einc

polarized along the z axis with an exp(−iωt) implicit time
dependence. The object is supposed to be contained in a test
domain D and the different media are characterized by their
propagation constant k(r) such that k(r)2 = ω2ε0εr(r)µ0 +
iωµ0σ(r), where ω is the angular frequency, ε0 and µ0 are the
permittivity and the permeability of free space, respectively,
r ∈ D is an observation point and εr(r) and σ(r) are the rel-
ative permittivity and conductivity of the medium. We now
consider a contrast function χ defined in D and null outside
the object, such that χ(r) = (k(r)2 − k21)/k21 , where k1 is
the propagation constant of the embedding medium and we
define w(r) as the Huygens type sources induced within the
target by the incident wave, i.e. w(r) = χ(r)E(r) where
E(r) is the total field in the target. By applying Green’s the-
orem to the Helmholtz wave equations satisfied by the fields
and by accounting for boundary and radiation conditions, we
obtain two coupled contrast source integral equations, whose
first one, denoted as observation equation, is a first-kind Fred-
holm integral equation that relates the scattered field y(r) ob-
served on a measurement domain S (r ∈ S), which results
from the interaction between the object and the interrogating
wave Einc, to the induced sources w(r):

y(r) = k21

∫
D
G(r, r′)w(r′) dr′, (1)

whereG(r, r′) is the 2-D Green’s function. The second equa-
tion, the so-called coupling equation, relates the unknown to-
tal field E in the object to the induced sources w(r):

E(r) = Einc(r) + k21

∫
D
G(r, r′)w(r′) dr′. (2)

The forward problem then consists in first solving (2) for E,
knowing χ, then solving (1) for y knowing w. This is done
from discrete counterparts of the above equations obtained
by means of a method of moments [12] with pulse-basis and
point matching. The test domain D is then partitioned into
ND elementary square pixels small enough in order to con-
sider the field and the contrast as constant over each of them.

3. BAYESIAN FRAMEWORK AND PRIOR
INFORMATION

Let us denote as E, χ and w the vectors that contain the val-
ues of E(r′), χ(r′) and w(r′) at the centers r′ of the pixels
(r′ ∈ D), as y the vector containing the values of the scat-
tered field y(r) at the measurement points r (r ∈ S) and as
Go andGc huge matrices whose elements result from the in-
tegration of the Green’s function over the elementary pixels
(their expressions are given in [9]). Let us also introduce a
subscript n that accounts for the different frequencies (f ) and
source positions (ν) and two variables, ε and ξ, that account
for the model and measurement errors and that are supposed
to be centered and white and to satisfy Gaussian laws (i.e.,
εn ∼ N (0, vεI) and ξn ∼ N (0, vξI)). By rewriting (2) in
terms of the contrast sources, we get the following discrete
counterparts of the observation and coupling equations:

yn = Go
f wn + εn (3)

wn = Xf E
inc
n + Xf G

c
f wn + ξn, (4)

where Xf = diag(χf ). The inverse problem consists, then,
in estimating the contrast χ, or more precisely the relative
permittivity εr and the conductivity σ, from the scattered
fields y, given the incident fields Einc. It can be noted
that, the induced sources w being unknown, they have to be
estimated at the same time as χ.

It is well known that inverse scattering problems are ill-
posed. This means that they must be regularized, which
is usually done by introducing a priori information on the
sought solution. The Bayesian framework is particularly well
suited for that, as it allows us to introduce such an informa-
tion in a really easy way. In the present case, the information
that we would like to account for is that the object is com-
posed of a finite number K of different materials distributed
in compact homogeneous regions. This prior information is
introduced by means of a hidden variable z(r), associated to
each pixel r, that represents a segmentation of the unknown
object. This label defines different classes of materials and
pixels with a given class k can be characterized by a contrast
that satisfies a Gaussian distribution:

p(χ(r)|z(r) = k) = N (mk, vk), k = 1, . . . ,K, (5)

with mean value mk and variance vk. The information that
the different materials are distributed in compact homoge-
neous regions is accounted for by means of a Potts-Markov
model on z that expresses the spatial dependence between
the neighboring pixels:

p(z|λ) =
1

T (λ)
exp

λ∑
r∈D

∑
r′∈Vr

δ (z(r)− z(r′))

 ,

(6)
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where z = {z(r), r ∈ D} represents the image of the labels
(segmentation), λ is a parameter that determines the correla-
tion between neighbors (herein λ = 1), T (λ) is a normaliza-
tion factor and Vr is a neighborhood of r, herein made of the
four nearest pixels.

It can be noted that a semi-supervised context is consid-
ered herein as K is supposed to be known, whereas the con-
trast χ, the induced currents w, the segmentation z and the
hyper-parameters of the model ψ = {m,v, vε, vξ} are esti-
mated simultaneously. We apply the Bayes formula to get the
joint posterior distribution of the unknowns:

p (χ,w, z,ψ|y) ∝ p (y|w, vε) p (w|χ, vξ) p (χ|z,m,v)

× p (z|λ) p (m|µ0, τ0) p (v|η0, φ0)

× p (vε|ηε, φε) p (vξ|ηξ, φξ). (7)

The expressions of p(y|w, vε) and p(w|χ, vξ), that appear in
the above equation, are derived from equations (3) and (4),
the expression of p (χ|z,m,v) is derived from equations (5),
whereas p(z|λ) is given in (6) and we assign the following
conjugate prior laws to the hyper-parameters:

p(mk) = N (µ0, τ0), p(vk) = IG(η0, φ0)

p(vε) = IG(ηε, φε), p(vξ) = IG(ηξ, φξ), (8)

whereN (m, v) and IG(α, β) stand for Gaussian and inverse-
gamma distributions, respectively, and µ0, τ0, η0, φ0, ηε, φε,
ηξ and φξ are meta-hyper-parameters appropriately set to ob-
tain almost non-informative prior distributions.

From equation (7), different inferences can be done on the
unknowns. The usual way is to define a point estimator such
as the joint maximum a posteriori (JMAP) or the posterior
mean (PM). Generally, easy expressions for any of these two
estimators are very hard to obtain. Hence, we approximate the
posterior law in an analytic way by means of the variational
Bayesian approach.

4. VARIATIONAL BAYESIAN APPROXIMATION

The outline of the variational Bayesian method (VBA, [8]) is
to approximate the joint posterior distribution p(x|y), where
x = {χ,w, z,ψ}, by a separable law q(x) =

∏
i q(xi)

which is as close to the posterior distribution as possible in
terms of the Kullback-Leibler divergence. It can be noted that
minimizing the KL divergence is equivalent to maximizing
the free negative energy derived from statistical physics:

F(q) =

∫
RN

q(x) ln

(
p(y,x)

q(x)

)
dx. (9)

We can thus summarize the objective of VBA by:

find qopt = arg max
q
F(q). (10)

Then, assuming the separability (q(x) =
∏
i q(xi)), we can

obtain an analytic form for q:

q(xi) ∝ exp
{
〈ln(p(x,y))〉∏

j 6=i q(xj)

}
. (11)

Now, by considering the joint posterior distribution (7), we
choose a strong separation form:

q(x) = q(vε)q(vξ)
∏
i

q(χi)q(wi)q(zi)
∏
k

q(mk)q(vk).

Then we apply the optimal form (equation (11)), which leads
to the following parametric distributions:

q(w) = N (m̃w, Ṽ w), q(χ) = N (m̃χ, Ṽ χ),

q(mk) = N (µ̃k, τ̃k), q(vk) = IG(η̃k, φ̃k),

q(vε) = IG(η̃ε, φ̃ε), q(vξ) = IG(η̃ξ, φ̃ξ),

q(z) = ζ̃k ∝ exp

λ∑
r∈D

∑
r′∈V(r)

ζ̃(r′)

, (12)

where the expressions of the tilted shaping parameters are de-
tailed in [9]. It can be noted that these parameters are mutu-
ally dependent and can only be computed in an iterative way.

The initial values of the unknowns χ(0) and w(0) are ob-
tained by backpropagating the scattered field data from the
measurement domain S onto the test domain D, whereas the
initial values of the segmentation z(0) are given by K-means
clustering [13], with empirical estimators for the hyperparam-
eters ψ(0). Here, given the fact that the contrast is complex
valued, first the real part is segmented and, then, the same
segmentation is used to initialize the imaginary part.

D

breast
εr

2
 = 6.12

σ
2
 = 0.11 S/m

9.6 cm

7.5 cm

2 cm

εr
3
 = 55.3

σ
3
 = 1.57 S/m
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receivers

emitter

tumor

D1

D2

D3

Fig. 1. The measurement configuration
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5. APPLICATION AND RESULTS

The above method is applied to microwave imaging of a sim-
ulated breast supposed to be affected by a tumor (see Fig.1).
The breast (domain D2) is of circular cross-section with a di-
ameter of 9.6 cm. It is placed in air (domain D1) and its rel-
ative dielectric permittivity and conductivity are respectively
equal to εr = 6.12 and σ = 0.11 Sm−1. The tumor (do-
main D3 ) is also of circular cross-section with a diameter of
2 cm and its relative dielectric permittivity and conductivity
are respectively equal to εr = 55.3 and σ = 1.57 Sm−1.
The source illuminates the breast from 16 various angular po-
sitions uniformly distributed around a circle of radius 7.5 cm
centered at the origin and at 6 different frequencies in the band
0.5 - 3 GHz. For each frequency and illumination angle, 32
measurements of the scattered field are performed at angular
positions also uniformly distributed around the same circle.
It can be noted that, in order to avoid committing a so-called

Fig. 2. Amplitude (left) and phase (right) of the scattered
fields computed by means of the data model (red full line)
and by means of the model used for inversion (black dashed
line) at two frequencies: 1.5 GHz (up) and 2.5 GHz (down).

“inverse crime” in the sense of [14], which would consist in
testing the inversion algorithm on data obtained by means of
a model closely related to that used in the inversion, the syn-
thetic data of the inverse problem are computed by means of
a forward model (the data model) rather different from the
one described in section 2. Indeed, whereas in the latter the
object under test is the breast affected by the tumor, in the
former it consists only in the tumor, the breast and the air
being then considered as a cylindrically stratified embedding
medium and the Green’s function modified consequently. For
inversion, the test domain D is a 12.16 cm sided square par-

titioned into 64 × 64 square pixels with side δ = 1.9 mm.
Figure 2 displays the scattered fields obtained by means of
the two models when the breast is illuminated by a source lo-
cated at 90◦ and operating at two frequencies: 1.5 GHz and
2.5 GHz. It can be observed that the results fit relatively well.

Fig. 3. Maps of the permittivity (left) and conductivity (right)
reconstructed by means of CSI (up) and VBA (middle) com-
pared to the real object (down).

Figure 3 displays maps of the permittivity and conductiv-
ity reconstructed by means of CSI after 500 iterations and by
means of VBA after 4000 iterations, the latter being previ-
ously initialized by a few CSI iterations. The quality of re-
construction is significantly improved with VBA, especially
for the conductivity, as compared to CSI which gives good
results but with an insufficient resolution. Figure 4 displays
the profiles reconstructed with both methods along an hori-
zontal line crossing the center of the tumor and evidences the
fact that VBA outperforms CSI, particularly with respect to
the conductivity profile.
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6. CONCLUSION

In this paper, microwave imaging for breast cancer detection
is tackled in a Bayesian framework with a Gauss-Markov-
Potts prior. A Variational Bayesian Approach (VBA) is used
to approximate posterior with a free-form distribution with
respect to complex quantities as both permittivity and con-
ductivity maps have to be retrieved. The results obtained by
means of this approach show its effectiveness. Good results
have been obtained concerning the retrieved permittivity, con-
ductivity and geometry of the object and it has been shown
that VBA performs better than the CSI deterministic inver-
sion method. The drawback of VBA is that, as CSI, it can
be considered as a local optimization algorithm that can be
trapped in suboptimal solutions corresponding to local min-
ima, contrarily to MCMC Bayesian approaches based upon
stochastic sampling. However VBA is much faster than the
latter (50 times faster for the configurations studied in [9]),
and its speed of convergence can still be improved by apply-
ing a gradient like variational Bayesian method [15]. Finally,
the application of the above method to laboratory controlled
data is under investigation.

εr
 -

 1
εr

 -
 1

(m)

σ
 (

S
/m

)

Fig. 4. Permittivity (up) and conductivity (down) profiles re-
constructed by means of CSI (red squares) and VBA (black
dashed line) compared to real profiles (blue full line).
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[2] P. A. Barrière, Développement d’algorithmes d’inversion rapi-
des et propositions relatives à la configuration du montage
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