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ABSTRACT

This paper investigates the selection of coefficients in an

adaptive multiscale local polynomial decomposition. The

multiscale local polynomial (MLP) decomposition is a slightly

overcomplete alternative for a critically downsampled fast

wavelet transform. Thanks to the redundancy, the MLP trans-

form reconciles numerically well conditioned analyses and

syntheses with smooth reconstructions for data observed on

irregular point sets on a real line. The MLP can also be seen

as an extension of a Burt and Adelson’s Laplacian pyramid

on irregular point sets, or as a new lifting scheme where the

classical interpolating prediction is replaced by smoothing

prediction, using statistical nonparametric estimation tech-

niques. The MLP allows easy extension towards adaptive de-

compositions, but the adaptivity is incompatible with some of

the design options for good numerical condition. This paper

implements an adaptive decomposition based on techniques

from statistical testing and investigates noise reduction within

the adaptive scheme with special attention to the numerical

condition of the decomposition.

Index Terms— Wavelets, local polynomial, kernel smooth-

ing, lifting, adaptive

1. INTRODUCTION

The multiscale local polynomial (MLP) transform has been

introduced [1] as a slightly overcomplete lifting scheme, us-

ing statistical nonparametric estimation techniques as basic

building block. These nonparametric estimation techniques

include spline, kernel and local polynomial [2] smoothing

methods. They replace interpolating prediction as basic prin-

ciple in the definition of wavelet or detail coefficients as local

offsets between an observation and a prediction based on the

adjacent observations. One of the objectives of using smooth-

ing instead of interpolation is to combine the smooth recon-

structions from a linear nonparametric estimation method and

the powerful nonlinear wavelet coefficient selection methods,

∗Research support by the IAP research network grant nr. P7/06 of theBel-

gian government (Belgian Science Policy) is gratefully acknowledged.

such as thresholding. The nonlinear approach is necessary

for signals with jumps, while the use of linear smoothing

between the jumps aims at smoother and sparser represen-

tations of the the intervals between the jumps, with less false

discoveries of large detail coefficients. A second objective

is a straightforward application of the method on data ob-

served on nonequidistant points. Wavelet decompositions on

nonequidistant point sets [3, 4, 5, 6, 7] have long seen prob-

lems in combining a fast decomposition, good numerical con-

dition and smooth reconstruction. For both numerical condi-

tion and smooth reconstruction, smoothing prediction has the

potential to outperform interpolation as basic tool. It is less

sensitive to local errors, and obviously produces smooth pre-

dictions, up to degree that is easily controlled by the user.

Nevertheless, for reasons of continuity, smoothing requires a

slight redundancy in the decomposition [1]. Critically down-

sampled multiscale transforms on irregular structures can be

numerically well conditioned, even orthogonal but only so in

a context where smoothness does not play a role. This is the

case for graphical data [8]. The combination of smoothness,

numerical condition and critical downsampling seems to be

impossible on inequidistant data. The overcomplete decom-

position can be seen as a lifted and nonequispaced version

of a Laplacian pyramid [9]. Laplacian pyramids have been

analyzed, among others, in a context of lifting [10, 11] and

frame theory [12], for data on equispaced grids and images.

It is interesting to remark that the MLP, although developed

for nonequispaced data in the first place, performs surpris-

ingly well in image denoising, even compared to the non-

decimated wavelet transform using the Cohen-Daubechies-

Feauveau wavelets with less dissimilar lengths [13]. This

family of wavelets is popular in image processing, and using

a nondecimated version generally improves the noise reduc-

tion performance. It should be noted that the non-decimated

wavelet transform has more redundancy than the MLP, and

yet the latter performs slightly better.

Another benefit from the multiscale local polynomial

decomposition, compared to classical wavelets, is that the

successive resolution levels do not need to represent dyadic

scales. Indeed, thanks to the slight redundancy, the subsam-

EUSIPCO 2013 1569743427

1



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

pling rate can be controlled by the user, together with the

bandwidth of the smoothing operation within each scale.

This paper concentrates on data-adaptive versions of

multiscale local polynomial transforms. Data-adaptivity is

facilitated by the flexibility in bandwidths, subdivision rate

and adopted smoothing routine with the slightly redundant

scheme. Among the large variety of adaptive realizations,

the focus in this paper is on an implementation that uses

truncated kernels and statistical testing in order to capture the

precise location of possible jumps or singularities during the

decomposition phase. Jump-adaptive decompositions have

the advantage that reconstruction from processed coefficients

does not suffer from missed discoveries (false negatives),

leading to sharper reconstruction near the edges.

2. MULTISCALE LOCAL POLYNOMIALS

The multiscale local polynomial decomposition, depicted in

Figure 1, is constructed as a Laplacian pyramid extended us-

ing lifting operations. Let tj+1 be the grid of sample loca-

tions at fine scale j + 1 and sj+1 the corresponding signal

values. Detail coefficients, also named offsets or wavelet co-

efficients are the difference between sj+1 and a prediction

based on a subsampled lowpass version of the signal Pj · (↑

2)(↓ 2)H̃j · sj+1. Unlike in critically downsampled wavelet

transforms, subsampling or decimation does not take place on

the detail coefficients. The reason for this, further elaborated

in [13], is that the prediction filter Pj takes the form of a non-

interpolating smoothing operation. More precisely, suppose

the smoothing operation is given by Pj(u; tj , sj), meaning

that locations tj and values sj are used to contruct a smooth-

ing curve for evaluation in u. Then the corresponding filter Pj

is a matrix with elements Pj,k,ℓ = Pj(tj+1,k; tj , δ[tj − tj,ℓ]),
with δ[t] the Kronecker delta impulse for which δ[0] = 1 and

δ[t] = 0 if t 6= 0. Interpolating prediction, common in lifting

schemes, has the continuity property that

lim
u→tj,k

Pj(u; tj , sj) = sj,k. (1)

Expression (1) is a necessary condition for continuous and

smooth basis or frame functions.
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Fig. 1. One interscale step in a forward and inverse multi-

scale local polynomial transform. The inverse transform is

not unique, because of the redundancy in the decomposition.

The resulting multiscale transform thus includes the fol-

lowing steps:

• Copy the input into two branches.

• Pre-filter and Subsample (downsample, decimate) the

input on one of the branches, i.e., s
[0]
j = (↓ 2)H̃j ·sj+1,

as well as the corresponding grid of locations, tj =
(↓ 2)tj+1. The prefilter has a smoothing or any other

lowpass effect. Obviously, downsampling and upsam-

pling can always be incorporated into the filter before

or right after the operation. Downsampling and up-

sampling symbols in the scheme merely emphasize the

change of vector size.

• Predict the other branch by another smoothing opera-

tion on the subsampled branch. The offset between the

original values and the prediction is stored as detail- or

wavelet coefficients, i.e.,

wj = sj+1 − Pj · (↑ 2)s
[0]
j . (2)

• Update the subsampled branch to get

sj = s
[0]
j + (↓ 2)Uj ·wj . (3)

The multiscale iteration is initialized by sJ,k = Yk and tJ,k =
tk, where t is the observational grid and Y the observed sig-

nal.

3. DESIGN OF THE NONSTATIONARY FILTERS

3.1. The update filter

The coarse scaling coefficients have undergone three fil-

ter operations in the transition from fine to coarse. The

first, prefilter, step is primarily an anti-aliasing operation.

It contributes to numerical condition, which can further be

improved by the third, update filter. The update should be de-

signed such that the reconstruction from a detail offset carries

no DC-component. This so-called primal vanishing moment

condition is necessary for a numerically well conditioned

decomposition of signals with jumps [14]. Just as in classical

wavelet theory, the design of the update operations Uj for

primal vanishing moments requires the introduction of scal-

ing basis functions that can be associated with the refinement

or prediction scheme Pj . More precisely, let Φj(t) denote

a row vector of functions such that any expansion Φj(t)sj
can be refined or subdivided as Φj(t)sj = Φj+1(t)sj+1

with zero detail coefficients wj = 0. By checking which

sj+1 follows from refinement of the identity matrix, i.e., for

sj = Ij , we can find expressions for the basis functions

Φj(t). The refinement is an instance of the inverse transform,

sj+1 = Pj(↑ 2)sj , depicted in Figure 1. The basis functions

thus follow recursively asΦj(t) = Φj+1(t)·Pj(↑ 2). The col-

umn vectors of their moments are M
(p)
j =

∫∞

−∞
ΦT

j (t)t
pdt.

The primal vanishing moment condition can then be ex-

pressed as a set of equations in Uj [1]

M
(p)
j+1 = UT

j ·M
(p)
j , (4)
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for p = 0, . . . , n−1. The higher the number of primal vanish-

ing momentsn, the more entries in the matrixUj are nonzero.

For n = 2, the primal vanishing moment condition can be

fulfilled with a two-taps filter in Uj . More precisely [7], for

l ∈ {0, 1},

Uj,k,k+l = (−1)l
M

(0)
j+1,2k+1

M
(0)
j,k+l

·
tj,k+1−l − tj+1,2k+1

tj,k+1 − tj,k,

where

tj,k =
M

(1)
j,k

M
(0)
j,k

=

∫∞

−∞
tϕj,k(t) dt∫∞

−∞
ϕj,k(t) dt

,

which can be seen as a mean location of scaling function

ϕj,k(t). Note, however, that tj,k may fall outside the sup-

port of ϕj,k(t) if ϕj,k(t) < 0 for some values t ∈ R. In order

to bound the update coefficients Uj,k,k+l and hence keep the

transformation numerically well conditioned, it is necessary

that the fine scaling function is “located” between the two

coarse scaling functions, i.e.,

tj,k ≤ tj+1,2k+1 ≤ tj,k+1. (5)

The basis functions can be reordered to impose this condi-

tion. This reordering may not correspond to the “natural”

ordering of the basis functions, i.e., the locations of the sup-

ports of the functions. In that case, a wavelet coefficient may

refer to multiply located basis functions. Operations on the

wavelet coefficients (such as thresholding) may have an un-

wanted non-local side effect. The combination of numerical

condition, smoothness of reconstruction and locality of oper-

ations is thus not trivial for nonequidistant samples. Uncare-

ful definition of the update step, proposed for controlling the

numerical condition of the transform for signals with jumps,

may introduce new numerical problems.

3.2. The prediction operation

Numerical condition motivates not only the use of an up-

date step, it is also promoted by imposing the prediction op-

eration in the second filter to be convex. Convexity is re-

alized by defining the kth component of the prediction as

[Pj(↑ 2)sj ]k = Pj(tj+1,2k+1; tj+1,e), where Pj(t; tj+1,e)
is a smoothing function that in each point t is constructed

as a local polynomial of degree ñ. This can be formalized

as Pj(t; tj+1,e) = T(ñ)(t)β̂, where β̂ is the vector of poly-

nomial coefficients and T(ñ)(t) = [1 t . . . tñ−1]. The poly-

nomial coefficients are found as minimizers of the weighted

least squares expression

‖Wj+1,e(t)(Y − Tj+1,eβ)‖

for β satisfying the constraints (for i ∈ e)

∂(T(ñ)(t)β)

∂Yi
≥ 0.

The weights, and hence the polynomial coefficients, de-

pend on the argument t, through a moving kernel K(t).
Wj+1,e(t) is a diagonal matrix of weights with elements

(Wj+1,e)kk(t) = K
(

t−tj,e,k
hj+1

)
.

The constraints impose positivity of the elements in the

prediction matrix. If ñ ≥ 1, the rows of the matrix sum up

to one, causing the elements to be convex. A bit confusingly

from the terminology point of view, the constraint minimiza-

tion problem itself is a non-convex combinatorial problem.

As the problem is solved locally for all elements tj+1,2k+1,

this has limited computational consequences.

If the observations are not equidistant, then for the sake

of smooth reconstructions after thresholding or other process-

ing, the polynomial degree ñ− 1 should be at least one. That
means that Nadaraya-Watson kernel estimation (for which

ñ = 1) cannot possibly lead to smooth reconstructions. In-

deed, if ñ < 2, the function y = x cannot be represented in

the scheme without nonzero details. As a consequence, the

grid structure of the observations is reflected in a reconstruc-

tion where details have been thresholded.

4. ADAPTIVE MULTISCALE LOCAL POLYNOMIAL

TRANSFORMS

4.1. Truncated kernel functions

For the detection of possible jumps during the transforma-

tion, we propose to compute for each coefficient three ver-

sions wC , wL and wR of the offsets as defined in (2). The

offset wC comes from the full kernel KC(t) = K(t) as in-
troduced in Section 3.2, whereas the two others come from

truncated kernels KL(t) = K(t) · χt≤0(t) and KR(t) =
K(t) ·χt≥0(t) forw

L andwR, respectively; see Figure 2. (In

these definitions χA(t) stands for the characteristic or identi-
cator function of a set A.) The idea is to choose the smallest

of the three coefficients and store the choice for use in the

reconstruction.

(a) (b) (c)

Fig. 2. Left truncated (a), full (b) and right truncated (c) ker-

nels in adaptive kernel smoothing.

Once a truncated estimation is chosen, then truncation at

that location should also be applied to adjacent offsets that

have resulted from kernels whose supports contain the trun-

cation point. This local update of coefficients is necessary

for reasons of smooth reconstructions. It also avoids multiple

3
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detections of the same break point. This results in an adap-

tive partitioning algorithm at each scale j, summarized below.

Most of the administrative effort in item 4 is spent on finding

the correct subinterval for a newly found partitioning point.

1. ComputewC
j , w

L
j , andw

R
j .

2. Initialize the partition of the grid locations Tj to the

trivial partition

Tj = {T 0
j,0}, with Tj,0 = {tj,1, . . . , tj,nj

},
and nj is the number of offsets (length of vectors ws

j

with s ∈ {L,C,R}).

3. Set r = 0

4. repeat

• find k that maximizes

dj,k = max(|wC
j,k| − |wL

j,k|, |w
C
j,k| − |wR

j,k|)

• If |wC
jk
| > λ (a threshold, see below) and

max(|wL
j,k|, |w

R
j,k|) < λ

then

– Find p such that tj,k ∈ T r
j,p

– If |wL
j,k| < |wR

j,k|,

then T r+1
j,p = {ℓ ∈ T r

j,p|ℓ ≤ k}

else T r+1
j,p = {ℓ ∈ T r

j,p|ℓ ≤ k − 1}

– Set T r+1
j,p+1 = T r

j,p\T
r+1
j,p ,

i.e. the complement of T r+1
j,p in T r

j,p

– For q ∈ {p, p+ 1}, computewC
j,q,w

L
j,q , and

wR
j,q and fill in intow

C
j ,w

L
j , andw

R
j

– For q < p, set T r+1
j,q = T r

j,q

– For q > p, set T r+1
j,q+1 = T r

j,q

– Set Tj = {T r+1
j,p , p = 0, . . . , r}

– Set r to r + 1.

else stop search = TRUE

until stop search

4.2. Statistical testing

The routine described above compares the magnitude |wC
jk
|

with the magnitudes |wL
jk
| and |wR

jk
|. This can be seen as

a statistical test of significance. Let µs
j,k = E(ws

jk
) for

s ∈ {L,C,R}, then we test if H0 : µs
j,k = 0 against

H1 : µC
j,k 6= 0 and min(|µL

j,k|, |µ
R
j,k|) = 0. The test can

be repeated for every k separately, based on the test statis-

tic Tk = max(|wC
jk
|/|wL

jk
|, |wC

jk
|/|wR

jk
|), or any equivalent

value. This test statistic is independent from the variance of

the coefficients. Its null distribution, however, is that of the

maximum of two ratios, which is typically a heavy tailed vari-

able. For instance, for Gaussian observations, the distribution

under H0 is a Cauchy variable. The heavy tails lead to tests

with little power, many false positives or both.

In order to increase the power of the statistical tests, we

estimate the variance of each coefficient based on all coef-

ficients at scale j. This estimation proceeds in two steps.

First, assuming that the observations are independent, iden-

tically distributed, we have for the covariance matrix Σy =
σ2I . From there we can, up to the unknown constant σ2,

find the structure of the covariance matrix of the coefficients

using the recursion sj = Ṽjsj+1, and the expression wj =

W̃jsj+1. The corresponding covariance matrices are Σsj
=

ṼjΣsj+1
Ṽ T
j and Σwj

= W̃jΣsj+1
W̃T

j , allowing to standard-

ize the detail coefficients as w′
j,k = wj,k

[(
Σwj

)
kk

]−1/2
, for

which we know that var(w′
j,k) = σ2. In a second step, the

parameter σ can be estimated, using the sparsity of the de-

compositions. For Gaussian data, this could be, for instance,

the median absolute deviation (MAD) based estimator

σ̂j = median(|w′
j |)/Φ

−1(3/4),

where Φ(x) is the cumulative Gaussian distribution, and

Φ−1(3/4) ≈ 0.6745. Based on this estimator, we can impose

a thresholdλ on |w′
j |/σ̂j and select coefficients that are above

the threshold, while at least one of its truncated equivalents

are below the threshold.

4.3. Truncating and numerical condition

Truncation is incompatible with some of the techniques for

numerically well conditioned transforms described above. In-

deed, with a truncated kernel, all even neighbors used for pre-

diction are taken from one side (left or right) of the point of

evaluation. Unless the prediction is a least squares constant,

such an extrapolation cannot possibly be a convex combina-

tion of the observations. On the other hand, as mentioned

before, least squares constant, i.e., Nadaraya-Watson kernel

prediction cannot possibly be smooth. Non-convex predic-

tion remains fairly harmless as long as the update step satis-

fies a condition like the one in (5). This condition can, how-

ever, not be satisfied if the update step operates on one side

of the detected singularity. If operates on both sides, it cre-

ates detail basis functions that stretch on both sides, while the

corresponding coefficients are based on observations on one

side only. This contradiction suggests that adaptive multiscale

transforms might be better off without update steps. It should

be brought in at this point that updates are necessary for good

behavior near singularities, and this is exactly the place on

which adaptivity focusses, be it in a different way.

5. RESULTS AND DISCUSSION

Figure 3 compares the outcome of a noise reduction using an

updated multiscale local linear estimation with the outcome

from an adaptive multiscale local linear estimation. The sig-

nal is observed with stationary additive noise, i.e., Y = f+ε.

The signal-to-noise ratios SNR = 10 log10(‖f−f‖22/var(ε))
for this example are 12.87 dB at the input, 24.07 dB for the

non-adaptive output, and 24.61 dB for the adaptive alterna-

tive.
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Fig. 3. (Top) Test signal with 2049 observations, subject to in-

dependent, homoscedastic, additive normal errors. (Middle)

Reconstruction using updated multiscale local linear smooth-

ing. (Bottom) Reconstruction with adaptive multiscale local

linear smoothing.

The adaptive transform is computationally slightly more

expensive, keeping, however, the linear order of complexity.

The reconstruction from the adaptive transform is smoother in

the intervals between the jumps, because the adaptive trans-

form needs only one label per scale, indicating the location

of the jump, while in a non-adaptive transform several large

coefficients are grouped around this location, causing the the

optimal threshold to be much lower. Another mechanism con-

tributing to the potential of the adaptive transform is the va-

riety of alternatives that can be considered when testing for

the presence of a jump. In wavelet thresholding, the only al-

ternative is to include or not a basis function. In adaptive

transforms, the basis function can be included, half-included

or otherwise taken into consideration.
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