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ABSTRACT

We propose an efficient multikernel adaptive filtering algo-
rithm with double regularizers, providing a novel pathway to-
wards online model selection and learning. The task is the
challenging nonlinear adaptive filtering under no knowledge
about a suitable kernel. Under this limited-knowledge as-
sumption on an underlying model of a system of interest,
many possible kernels are employed and one of the regular-
izers, a block !1 norm for kernel groups, contributes to se-
lecting a proper model (relevant kernels) in online and adap-
tive fashion, preventing a nonlinear filter from overfitting to
noisy data. The other regularizer is the block !1 norm for data
groups, contributing to updating the dictionary adaptively. As
the resulting cost function contains two nonsmooth (but prox-
imable) terms, we approximate the latter regularizer by its
Moreau envelope and apply the adaptive proximal forward-
backward splitting method to the approximated cost function.
Numerical examples show the efficacy of the proposed algo-
rithm.
Index Terms— kernel adaptive filter, proximity operator,

multiple kernels

1. INTRODUCTION

We address the challenging task of online model selection and
learning using multikernel adaptive filtering [1]. The chal-
lenge is that model selection, as well as estimation of the un-
known nonlinear system, needs to be made online and also
adaptively. The key assumption is that no adequate kernel is
available unlike the prior works on kernel adaptive filtering
[2–5]. Under this assumption, the existing kernel adaptive fil-
tering algorithms are not expected to work well.

The multikernel adaptivefiltering techniquemodels an es-
timandum (a system to be estimated) as a function in the sum
of multiple reproducing kernel Hilbert spaces (RKHSs) asso-
ciated with multiple positive definite kernels [6, 7]. There-
fore, it has higher degrees of freedom compared to the multi-
ple kernel learning (MKL) approaches [8, 9] which model the
estimandum as a function in a single RKHS associated with
the best kernel. See [1] for more details about the relation-
to/differences-from the MKL approaches. One may apply the
multikernel adaptive filtering technique with many possible
kernels such as Gaussian kernels with a wide range of kernel
parameters. This approach however carries a significant risk
of overfitting to noisy data due to the high degrees of free-
dom together with the use of narrow Gaussian kernels. The

∗This work was supported by KDDI Foundation. Masahiro Yukawa
thanks Dr. Sohan Seth of Aalto University for pointing out the article [9] dur-
ing his short visit in Finland in summer 2012, which touched off the present
study. He also thanks Shunsuke Ono of Tokyo Institute of Technology for
pointing out the articles [15–17] which allowed to clarify the motivation for
introducing the Moreau envelope approximation.

overfitting issue becomes more serious as the noise magni-
tude becomes larger (as will be shown in Section 4), resulting
in failure to estimate the unknown system accurately.

In this paper, we present an efficient multikernel adaptive
filtering algorithm with double regularizers for online model
selection and learning. One of the regularizers is the block ! 1
norm for kernel groups, which contributes to nulling the co-
efficients of such kernels that are unsuitable for the learning
task. A proper model is thus selected, alleviating the over-
fitting problem. The other regularizer is the block ! 1 norm
for data groups, which contributes to nulling the coefficients
of such dictionary data that are less relevant to the learning
task than the others. The dictionary data are thus updated
in an adaptive manner. The time-dependent cost function
then becomes a sum of a smooth convex function (a data fi-
delity term) and a pair of nonsmooth (but proximable) con-
vex functions. We approximate the data-selective regularizer
by its Moreau envelope, and this approximation makes the
cost function into a sum of smooth functions and a single
nonsmooth function to which the adaptive proximal forward-
backward splitting method [10] can be applied. The dictio-
nary is constructed as follows: a new datum is selectively
added into the dictionary based on the coherence criterion
[3], which reduces the risks of overfitting impulsive noise, and
the dictionary data with minor contributions are discarded by
the combination of soft-shrinkage and hard-thresholding. Nu-
merical examples show that the proposed algorithm selects a
proper model online, thereby alleviating the overfitting prob-
lem and leading to better estimation performance than the ex-
isting multikernel adaptive filtering algorithms, and also that
it adapts to an abrupt change of nonlinear systems.

2. MULTIKERNEL ADAPTIVE FILTERING

Throughout the paper, let R, N, and N∗ denote the sets of
all real numbers, nonnegative integers, and positive integers,
respectively. Define an inner product between twomatricesA
andB by 〈A, B〉 := tr(ATB), where (·)T and tr(·) stand for
transpose and trace, respectively. Its induced norm is defined
as ‖A‖ :=

√
〈A, A〉 for any matrix A. Note that, in the

particular case that A is a vector, these are reduced to the
standard inner product and the Euclidean norm, respectively.

Let U denote the input space which is a compact (i.e.,
bounded and closed) subset of the L dimensional Euclidean
space RL. (L is the only knowledge about the estiman-
dum that is assumed known a priori excluding the algorithm
parameters.) We consider online scenarios in which input
vectors (un)n∈N ⊂ U arrive sequentially and the response
dn ∈ R, n ∈ N, to each un is a nonlinear function of un.
The task of nonlinear adaptive filtering is to find and/or track
the time-variable nonlinear function (the estimandum) in an
online fashion with the sequentially arriving measurements
(un, dn)n∈N.

EUSIPCO 2013 1569743433

1



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

We consider the case that a proper model for the estiman-
dum is unknown. A practical approach in this case is to use
many possible kernels under the multikernel adaptive filter-
ing framework [1]. Let κm : U × U → R, m ∈ M :=
{1, 2, · · · , M}, denote the set of positive definite kernels to be
used. Let {κm(·, uj)}m∈M,j∈Jn be the dictionary indicated
by the dictionary index set Jn := {j(n)

1 , j(n)
2 , · · · , j(n)

rn } ⊂
{0, 1, · · · , n−1}, where rn ∈ N∗ is the size of the dictionary
index set Jn. A multikernel adaptive filter is then given by

φn(u) :=
∑

m∈M

∑

j∈Jn

h(m)
j,n κm(u, uj)

︸ ︷︷ ︸
themth model

, u ∈ U (1)

where h(m)
j,n ∈ R, m ∈ M, j ∈ Jn. An estimate of dn is

given by

d̂n := φn(un) = 〈Hn, Kn〉 (2)

where the (m, i) entries of the matrices Hn ∈ RM×rn

and Kn ∈ RM×rn are given by [Hn]m,i := h(m)

j
(n)
i ,n

and

[Kn]m,i := κm

(
un, u

j(n)
i

)
, respectively.

3. ONLINE MODEL SELECTION AND LEARNING
SCHEME

This section presents the proposed scheme for online model
selection and learning. The scheme selects a proper model by
making many coefficients h(m)

j,n for all j ∈ Jn and for some
m ∈ M associated with those kernels which are irrelevant
to the nonlinear system. Thus, improper models (irrelevant
kernels) are automatically excluded from the expansion in (1),
and this avoids the overfitting problems.

3.1. Cost Function with Double Regularizers
The size and associated data indices of the coefficient matrix
Hn ∈ RM×rn depend on the dictionary index set Jn and are
therefore time dependent. The cost function to be considered
is thus a function of a matrix in RM×rn+1 (not in RM×rn ).
We start by considering the following cost function:

Θn(X) := ϕn(X)+ψ(1)
n (X)+ψ(2)

n (X), n ∈ N, (3)

forX :=
[
x1 x2 · · ·xrn+1

]
:= [ξ1 ξ2 · · · ξM ]T ∈ RM×rn+1 ,

where

ϕn(X) :=
1
2
d2(X, Cn) (data fidelity term)

ψ(1)
n (X) := λ1

rn+1∑

i=1

wi,n ‖xi‖ (block !1 for data groups)

ψ(2)
n (X) := λ2

M∑

m=1

νm,n ‖ξm‖ (block !1 for kernel groups).

Here, λ1,λ2 ≥ 0 are the regularization parameters,wi,n, νm,n

> 0 are the weights, and d(X , Cn) := minY ∈Cn ‖X − Y ‖

is the metric distance between a pointX ∈ RM×rn+1 and the
set

Cn :=
{
X ∈ RM×rn+1 : |εn(X)| ≤ ρ

}
. (4)

The set Cn consists of the parameter matrices which pro-
vide the magnitude of the instantaneous estimation error
εn(X) :=

〈
X, K̃n

〉
− dn bounded by ρ ≥ 0. Here,

K̃n ∈ RM×rn+1 consists of a submatrix ofKn and possibly
a new vector kn,n at the rightmost column according to the
update of the dictionary index set Jn into the new one Jn+1.
(The formal definition of K̃n is given in Section 3.2.) The
role of each term is given as follows: (i) ϕn(X) is for re-
ducing empirical risks (estimation errors for observed data),
and (ii) ψ(1)

n and ψ(2)
n are regularizers for reducing general-

ization errors. Indeed, ψ (1)
n promotes column-wise sparsity,

whereas ψ(2)
n promotes row-wise sparsity; i.e., those regular-

izers contribute to selecting data and kernels which are most
relevant to the estimation. In the present study, the row-wise
sparsity is of particular importance because it is supposed
that some of the kernels are not relevant to the estimation and
the parameters associated with such irrelevant kernels should
be zero to prevent the nonlinear filter from overfitting noisy
data.

Now the question is how to suppress the cost functionΘn
which is time-varying. The point is that ϕn is a differentiable
convex function having a Lipschitz continuous gradient while
the regularizers ψ(1)

n and ψ(2)
n are nondifferentiable but con-

vex and proximable. Here, proximablemeans that the proxim-
ity operator can be computed easily. Our approach is to apply
the adaptive proximal forward-backward splitting algorithm
[10] to the following approximate cost function:

Θ̃n(X) := ϕn(X) + γψ(1)
n (X)︸ ︷︷ ︸

smooth

+ ψ(2)
n (X)︸ ︷︷ ︸

proximable

where γψ(1)
n (X) denotes the Moreau envelope of ψ (1)

n (X) of
index γ ∈ (0,∞) defined as

γψ(1)
n (X) := min

Y ∈RM×rn+1
ψ(1)

n (Y )+
1
2γ

‖X − Y ‖2 . (5)

See [11, 12] for details about proximity operators andMoreau
envelopes.

3.2. Adaptive Algorithm

We define the modified matrices H̃n ∈ RM×rn+1 and K̃n ∈
RM×rn+1 with their (m, i) entries given by [H̃n]m,i :=
h(m)

j
(n+1)
i ,n

and [K̃n]m,i := κm

(
un, u

j
(n+1)
i

)
, respectively.

The modified matrix H̃n consists of a submatrix ofHn elim-
inating some columns with minor contributions and possibly
a new entry hn,n := 0 at the rightmost column if n ∈ Jn+1.

The dictionary is initialized as J0 := {0}. Let H̃0 :=
h0,0 = 0. The proposed algorithm is then given by

Hn+1 := prox
ηψ

(2)
n

[
H̃n−η

(
∇ϕn(H̃n)+∇γψ(1)

n (H̃n)
)]

,

n ∈ N, (6)
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where η ∈ (0, 2/α) is the step size. Here, α := 1 + 1
γ is

the Lipschitz constant1 of the mapping T : RM×rn+1 →
RM×rn+1 , X ,→ ∇ϕn(X) + ∇γψ(1)

n (X). The gradients
∇ϕn(H̃n) and∇γψ(1)

n (H̃) in (6) are given respectively by

∇ϕn(H̃n) = H̃n − PCn(H̃n) (7)

∇γψ(1)
n (H̃n) =

H̃n − prox
γψ(1)

n
(H̃n)

γ
. (8)

Here, PCn(H̃n) denotes the projection2 of H̃n onto the hy-
perslab Cn defined in (4) and has a closed-form expression:

PCn(H̃n)=H̃n−sign(εn(H̃n))
max{|εn(H̃n)|−ρ, 0}

‖K̃n‖2
K̃n.

Finally, prox
γψ

(1)
n
in (8) and prox

γψ
(2)
n
in (6) are the proxim-

ity operators of ψ(1)
n and ψ(2)

n , respectively, of the index γ,
and are given respectively by

prox
γψ

(1)
n

(X) := argmin
Y ∈RM×rn+1

ψ(1)
n (Y ) +

1
2γ

‖X − Y ‖2

=
rn+1∑

i=1

max
{

1 − λ1γwi,n

‖xi‖
, 0

}
xie

T
i,rn+1

,

prox
ηψ

(2)
n

(X) =
M∑

m=1

max
{

1 − λ2ηνm,n

‖ξm‖ , 0
}

em,MξT
m,

X := [x1 x2 · · · xrn+1] := [ξ1 ξ2 · · · ξM ]T ∈ RM×rn+1 .

Here, ep,q , p, q ∈ N∗, is a length-q unit vector that has one
at the pth entry and zeros elsewhere. The proximity operator
prox

γψ(1)
n
plays a role in selecting some data groups (some

column vectors of H̃n), while prox
ηψ(2)

n
selects some kernel

groups (some row vectors of H̃n). The operators are specifi-
cally referred to as block soft-thresholding.

3.3. Sparsification
Our sparsification is based on the following basic ideas: (i)
add a new datum into the dictionary only if it is sufficiently
novel, and (ii) discard those data which are irrelevant to esti-
mation. To be precise, the dictionary index set is updated as
follows:

Jn+1 :=

{
J n
≥ε ∪ {n}, if c(un,Jn) ≤ δ,

J n
≥ε, otherwise,

n ∈ N, (9)

where δ ∈ (0, 1], ε ≥ 0, and

J n
≥ε := {j ∈ Jn : ‖hj,n‖ ≥ ε},

c(un,Jn) := max
j∈Jn, m∈M

|κm(un, uj)|√
κm(un, un)κm(uj , uj)

∈ [0, 1].

1A mapping T : RM×rn+1 → RM×rn+1 is said to be Lipschitz con-
tinuous if ‖T (X) − T (Y )‖ ≤ α ‖X − Y ‖, ∀X, Y ∈ RM×rn+1 , for
some constant α > 0, and the minimum α is called the Lipschitz constant.

2Given any closed convex subset C ⊂ RM×rn+1 , the closest point of
anX ∈ RM×rn+1 in C is called the metric projection ofX onto C and is
denoted by PC(X) := argminY ∈C ‖X − Y ‖.

If κm(un, un) = 0 for some m ∈ M, we define c(un,Jn)
:= 1. The coherence [3] c(un,Jn) is used as a novelty
criterion for simplicity. The proximity operators prox

γψ(1)
n

and prox
γψ(2)

n
shrink those column and row vectors of H̃n

which have minor contributions in estimation. While such
row vectors (corresponding to kernel groups) tend to be-
come exactly zero, such column vectors (corresponding to
data groups) tend not to become zero due to the use of the
Moreau envelope γψ(1)

n rather than the ψ(1)
n itself. Note

here that η∇γψ(1)
n (H̃n) = η

γ

(
H̃n − prox

γψ(1)
n

(H̃n)
)
and

η
γ < 2

αγ < 2.

3.4. Remarks

Relation to MKNLMS-CS and MKNLMS-BT: If we let
λ1 = λ2 = ε = 0, the proposed algorithm is reduced to
the MKNLMS-CS (multikernel normalized least mean square
with coherence-based sparsification) algorithm [1]; i.e., the
proposed algorithm is a generalization of MKNLMS-CS. On
the other hand, if we let λ1 > 0, λ2 = 0, δ = 1, and choose
the ε value appropriately, the proposed algorithm would be-
have similarly to the MKNLMS-BT (multikernel normalized
least mean square with block soft-thresholding) algorithm [1],
but it is not a generalization of MKNLMS-BT. It might be
possible to switch the roles of ψ(1)

n and ψ(2)
n with an appropri-

ate modification. This approach however did not work well in
our experiments, because those row vectors with minor con-
tributions remain and yield extra errors.
Computational complexity: The number of multiplications
required for each update in the proposed algorithm is approx-
imately (L + 4M + 3M̂n)rn, where M̂n denotes the num-
ber of ‘active’ kernels at the nth iteration, whereas those for
MKNLMS-CS and MKNLMS-BT are (L+3M)rn and (L+
5M)rn, respectively. Here, we say that a kernel is active if
its associated row in H̃n is a nonzero vector. The number
of exponential calculations and memory requirements are the
same as MKNLMS-CS and MKNLMS-BT and are given by
Mrn and (L + M)rn, respectively. A remarkable feature of
the proposed algorithm is that the number of active kernels is
much less than the numberM of the kernels employed, as will
be seen in Section 4. This is advantageous because a proper
model is naturally obtained as a consequence of adaptation.
Also this can be used to reduce the complexity and memory
usages.
On the parameter selection: The regularization parameter
λ1 for data groups can be set to zero in stationary environ-
ments because there is no particular need to discard data from
the dictionary, provided that the coherence threshold δ is cho-
sen adequately. Therefore, a practical strategy is to set it to
zero at the beginning and activate it when the dictionary size
exceeds some prespecified value. The λ2 for kernel groups
is of great importance to alleviate the noise sensitivity, and
therefore its appropriate value depends on noise characteris-
tics. To cope with large noise, the λ2 should take a large value.
The weights wi,n and νm,n of the block !1 norms should be
designed in such a way that those column and row vectors
with relatively small norms diminish swiftly and, at the same
time, that those column and row vectors with large norms
shrink gradually to avoid extra bias in estimation. In the nu-
merical examples, the weights are set to some small constants
0 < εw, εν . 1, if each associated column or row vector of
H̃n has its norm greater than the thirty percent of the largest
norm among the column or row vectors, and set to one other-
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wise (see [1] for more discussion). The error bound ρ in (4) is
determined based on noise statistics; typical values, under the
assumption that nk ∼ N (0,σ2), include (i) the mean value
plus standard deviation ρ1 := (1+

√
2)σ2, (ii) the mean value

plus standard deviation ρ2 := σ2, and (iii) the peak value
ρ3 := 0 of the random variable vk := n2

k [13]. The index γ of
the Moreau envelope in (5) governs the range of the step size
η as well as the accuracy of the approximation (i.e., the gap
between ψ(1)

n and γψ(1)
n ). The smaller the γ is, the better the

approximation but the smaller the upper bound of η, causing
slow convergence. Our recommendation is to set the step size
η to some value around 0.1, as in the case of the normalized
least mean square (NLMS) algorithm for linear adaptive fil-
ters, and let γ = ((2/(η + εγ) − 1)−1 > 0 for some small
constant εγ ∈ (0, 2 − η) to ensure η = 2/α− εγ ∈ (0, 2/α).

4. NUMERICAL EXAMPLES

We conduct simulations in an estimation task of nonlinear
function with an abrupt change for L = 2 to show that the
proposed algorithm (i) selects a proper model online, (ii) alle-
viates the overfitting issue, (iii) adapts to the abrupt change of
nonlinear functions, and (iv) achieves better estimation per-
formance than the existing multikernel adaptive filtering algo-
rithms (MKNLMS-BT and MKNLMS-CS) [1]. We test 300
independent trials and, at each trial t = 1, 2, · · · , 300, the data
is generated as d(t)

n := ψn(u(t)
n )+v(t)

n , n ∈ N, withψn(x) :=
exp

(
−‖x − c1‖2

)
+ 1.2 exp

(
−5 ‖x − c2‖2

)
for n ≤

2000, where c1 := [0.2, 0.2]T and c2 := [0.7, 0.7]T, and
ψn(x) :=1.3 exp

(
−10 ‖x−c̃1‖2

)
+1.5 exp

(
−2 ‖x−c̃2‖2

)

for n > 2000, where c̃1 := [0.1, 0.9]T and c̃2 := [0.9, 0.1]T.
Here, each component of the input vector u (t)

n obeys the
i.i.d. uniform distribution between 0 and 1. It is supposed
that the data are contaminated by impulsive noise, 12 times
between iterations 100 and 135, of amplitude 50, and by
Gaussian noise obeying N (0, 0.1) at the other iterations. In
addition to the mean squared error (MSE), we also eval-
uate the peak squared error (PSE) defined as PSE(n) :=
maxt=1,2,··· ,300(φ

(t)
n (u(t)

n ) − d(t)
n )2 for measuring how the

impact of impulsive noise remains on nonlinear filters during
the adaptation. Totally M = 63 Gaussian kernels are em-
ployed with the kernel parameters a×10b, a ∈ {1, 2, · · · , 9},
b ∈ {−1, 0, 1, 2, 3, 4, 5}. To be precise, κm(x, y) :=
exp

(
−ζm ‖x − y‖2

)
, x, y ∈ U , m ∈ M, where ζ1 = 0.1,

ζ2 = 0.2, · · · , ζ63 = 9 × 105.
The parameters for the proposed algorithm are set to λ1 =

2.0 × 10−3, λ2 = 5.0 × 10−4, εw = 1.0 × 10−6, εν =
1.0 × 10−6, ρ = 0, η = 0.2, εγ = 1.0 × 10−5, δ = 0.9995,
ε = 5.0× 10−5. The parameters for MKNLMS-CS are set to
η = 0.2, δ = 0.9995, ρ = 0. The parameters for MKNLMS-
BT are set to µ = 0.2, λ = 1.0 × 10−2, εw = 1.0 × 10−6.
The learning curves in PSE andMSE are shown in Fig. 1. Ta-
ble 1 presents (i) PSE and MSE averaged over the last 1000
iterations and (ii) the number of active kernels and the dic-
tionary size r̄n averaged over the 5000 iterations. It is seen
that the proposed algorithm outperforms the other algorithms
both in PSE and MSE and exploits slightly less than a half of
the 63 kernels actively on average, while the dictionary sizes
of all algorithms are adjusted to be the same approximately.

Table 1. Comparisons of the MKNLMS-BT, MKNLMS-CS,
and proposed algorithms.

MKNLMS-BT MKNLMS-CS Proposed
PSE (×10−1) 5.66 3.94 1.80
MSE (×10−2) 3.21 4.09 1.77
# active kernels 63 63 31.1

r̄n 97.6 97.7 96.9

0 500010ï1

100

101

PS
E

Iteration

MKNLMS-CS
MKNLMS-BT

PROPOSED

(a)
0 500010ï2

10ï1

100

M
SE

Iteration

MKNLMS-CS
MKNLMS-BT

PROPOSED

(b)

Fig. 1. PSE and MSE learning curves.
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Fig. 2. Typical estimation results in the case of L = 1.
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Fig. 3. Typical examples of the coefficients for each kernel in
the case of L = 1. Each curve corresponds to each dictionary
datum.

This is thanks to the use of the double regularizers and better
understood by Figs. 2 and 3.

Figs. 2 and 3 show typical estimation results and filter co-
efficients, respectively, obtained after 5000 iterations in an-
other simpler experiment for L = 1 for an illustration pur-
pose. An impulsive noise contaminates the output of a nonlin-
ear system for an input signal around u = 0.92. In Fig. 3(a),
the red curve rises fromm = 37 up tom = 63 and it depicts
the coefficients for the data contaminated by the impulsive
noise. This causes the notable overfitting of MKNLMS-BT
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observed in Fig. 2. In Fig. 3(b), the coefficients for the large
kernel parameters are small but not exactly zero. This causes
the slight overfitting of MKNLMS-CS observed in Fig. 2. In
Fig. 3(c), the coefficients for irrelevant kernels are exactly
zero, implying that a proper model is selected online. This
yields the good estimation result of the proposed algorithm
observed in Fig. 2.

In our experiments, theMKNLMS-CS and proposed algo-
rithms avoid overfitting impulsive noise with high probability
since the algorithms suffer from notable overfitting only when
impulsive noise coincidentally happens together with a new
datum entering the dictionary. In case that the coincidence
happens, the proposed algorithm alleviates it gradually due
to the double regularizers as time goes by, while MKNLMS-
CS has no such capability. Note that the performance dete-
rioration of MKNLMS-CS stems from the fact that the dic-
tionary size tends to increase in nonstationary environments
and a newly entering dictionary datum pushes out the oldest
one everytime the dictionary size exceeds the upper bound
rmax := 96.

Final remarks are given below. We conducted additional
experiments to see how the proposed scheme competes with
a single kernel approach that is supposed to be able to ex-
ploit the best kernel parameter. Under the present experimen-
tal conditions, we observed that the baseline algorithm called
quantized kernel least mean squares (QKLMS) [5] outper-
formed the proposed scheme because of the use of extra infor-
mation on the best kernel parameter. For nonstationary data,
on the other hand, we observed that the proposed scheme out-
performedQKLMS significantly, as will be reported in a con-
ference [14]. We emphasize that this is because the proposed
scheme can automatically track a suitable model adaptively
while the single kernel approach cannot straightforwardly.

5. CONCLUDING REMARKS

Under the no-knowledge assumption on a suitable model, we
have presented an efficient multikernel adaptive filtering al-
gorithm with double regularizers for online model selection
and learning. The proposed algorithm employs many possi-
ble kernels and selects relevant ones based on the block !1
norm regularizer for kernel groups. The other block ! 1 norm
regularizer for data groups contributes to updating the dictio-
nary adaptively. We have approximated the second regular-
izer by its Moreau envelope and applied the adaptive prox-
imal forward-backward splitting method. Numerical exam-
ples have shown that the proposed algorithm selects a proper
model (i.e., relevant kernels), alleviating the overfitting prob-
lem significantly, and identifies the estimandum with high ac-
curacy. We stress here that the model selection and learn-
ing are made in online and adaptive fashion. Remarkably,
all of these are made under the framework of adaptive proxi-
mal forward-backward splitting method and no separate pro-
cedure is required for model selection. The present study in-
dicates that the multikernel adaptive filtering provides an at-
tractive approach to the online model selection and learning
problem.

There exist online/adaptive algorithms which can be ap-
plied directly to Θn in (3), including [15–17]. It is not trivial
though that those algorithms completely nullify any columns
and/or rows of the coefficient matrix H n in a finite number
of iterations. In contrast, the proposed scheme is naturally ex-
pected to make some rows with minor contributions be zero
exactly during adaptation (which has been shown by simula-
tions), thereby enabling online model selection. It will be an
interesting future work to explore the possibility of employing
such direct approaches.
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