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ABSTRACT

In this paper we present a combined hardware/software ap-

proach for synchronizing the sampling clocks of an acoustic

sensor network. A first clock frequency offset estimate is ob-

tained by a time stamp exchange protocol with a low data

rate and computational requirements. The estimate is then

postprocessed by a Kalman filter which exploits the specific

properties of the statistics of the frequency offset estimation

error. In long term experiments the deviation between the

sampling oscillators of two sensor nodes never exceeded half

a sample with a wired and with a wireless link between the

nodes. The achieved precision enables the estimation of time

difference of arrival values across different hardware devices

without sharing a common sampling hardware.

Index Terms: synchronization, acoustic sensor network

1. INTRODUCTION

Wireless sensor networks have been an active field of research

for many years [1]. The sensor networks have found nu-

merous application areas including environmental, medical,

military, transportation and entertainment systems, as well

as smart spaces. Recently, acoustic sensor networks have

gained increased interest, where a network of distributed mi-

crophones is employed for, e.g., surveillance tasks [2]. A

particular focus of research is collaborative signal process-

ing, where the signal processing task is distributed over the

sensor nodes, each node communicating only with its neigh-

borhood, while still maximizing a common objective func-

tion. Compared to centralized processing this has a couple of

advantages, such as reduced communications bandwidth and

the avoidance of a single point of failure. An example is the

distributed beamforming algorithm described in [3].

Many cooperative acoustic signal processing tasks, how-

ever, require that the sampling clocks of the distributed micro-

phones are synchronized. Consider for example the use of the

GCC-PHAT algorithm [4] for speaker localization, which re-

quires the estimation of the time difference of arrival between

microphone signals. Let us assume we are given two micro-

phones at a distance of 0.2m, which are sampled at 16 kHz
sampling rate. If the input signal comes from the endfire posi-

tion, it takes 0.2m/(340m/s)∗16.000Hz = 9.4 sampling in-

tervals to travel from the first to the second microphone. Now

assume that the two micropones are attached to different hard-

ware devices, whose sampling frequencies have a clock fre-

quency offset of 50 ppm. Thus, if the first oscillator has a fre-

quency of 16 kHz, the second may have one of 16 000.8Hz.

Then it takes 9.4/(0.8Hz) = 11.75 seconds until the two os-

cillators are 9.4 sampling intervals apart. Thus, if the signal

is arriving from the endfire position, after 11.75 s the signal is

perceived to be arriving from broadside! Due to the oscilla-

tor offset it thus seems that the signal source is moving at an

angular velocity of 90◦ per 11.7 s, i.e. at 7.66◦ per second!

Thus there is a clear need to compensate for sampling rate

offsets in acoustic signal processing tasks. Pawig, Enzner and

Vary showed that even small deviations between D/A and A/D

clocks result in a time-variant acoustic impulse response as

seen by the echo canceler [5]. In [6] a blind sampling rate

offset estimator is derived in the context of acoustic beam-

forming. It is based on the phase drift of the coherence of the

two microphone signals. After offset estimation the signal is

resampled for clock rate adjustment.

In this paper we take a different avenue. We assume that

the acoustic sensors are connected to a wireless or wired com-

munications network – which is a reasonable assumption, as

the sensor data need to be forwarded to other nodes or a cen-

tral processing device. We then take advantage of the large

literature on synchronisation of communication networks [7]

to align the A/D oscillators via the network.

Several algorithms have been proposed which rely on the

exchange of time stamps between the nodes. For example,

the algorithm of [8] achieves good synchronisation properties

at low computational effort. To further improve precision,

clock skew estimates can be further processed. The authors

of [9] for example distribute a Kalman filter across all sensor

nodes and each node use the state estimates of other nodes

to synchronize with a virtual master clock. Advantageous is

the lack of a single point of failure and the robustness against

packet losses within the IEEE 802.15.4 (ZigBee-PHY) wire-

less network. In [10] a IGMKPF called approach was pro-

posed which utilizes a computationally demanding combina-

tion of particle and Kalman filter which iteratively estimates

a Gaussian mixture model for the observation error.
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Collaborative acoustic signal processing requires particu-

larly precise clock synchronisation. In the approach presented

here, we employ a simplified version of the time stamp ex-

change method of [8], to save computational effort at little

loss in precision. The obtained initial clock frequency offset

estimates are further processed in a dedicated Kalman Filter.

The filter exploits the specific properties of the clock skew

estimates when the nodes are connected via a wireless sen-

sor network. Subsequently, the Kalman filter state estimate is

used to readjust the sampling frequency of one node with the

purpose of bringing the sampling frequencies of both nodes

in line.

The paper is organized as follows: In the next section

we briefly discuss the clock frequency offset estimation via

the time stamp exchange protocol of [8], and we present our

modifications to it. In Section 3 we show some experimental

results regarding the observation error which were the moti-

vation for the specific design of the Kalman filter presented in

Section 4. The experimental results in Section 5 starts with a

description of our hardware platform, followed by measure-

ment results for a wired and wireless link between two sensor

nodes. The paper finishes off with conclusions drawn in Sec-

tion 6.

2. CLOCK FREQUENCY OFFSET ESTIMATION

The clock frequency offset estimation is based upon the ap-

proach from [8] which we shortly describe in the following.

Let us assume that the sensor network has two nodes A and

B which periodically exchange time stamps. The node B is

selected as the master defining its clock to be the reference

clock.

tR,k tA,k tR,k+1 tA,k+1

t̃R,k
t̃A,k

t̃R,k+1
t̃A,k+1

A

B

t̃

t

Fig. 1. Development of local time at nodes A and B with

phase and frequency offset during time stamp exchange

In Fig. 1 the k-th and the (k + 1)-th time stamp exchange

is depicted. The slope of the time line t̃ of node B indicates

its clock frequency offset compared to node A.

Node A triggers the time stamp exchange by sending a

request at time instance tR,k which is received at the local

time instance t̃R,k at node B. The answers to the request

from B at time instance t̃A,k is received at tA,k at node A. It

follows that

t̃R,k = (tR,k + ξR,k) · ω + ϕ (1)

t̃A,k = (tA,k − ξA,k) · ω + ϕ (2)

where ξR,k and ξA,k are the transmission times of the time

stamp packets, ω is the clock frequency offset, also called

clock skew, between the two oscillators and ϕ is the phase

offset.

According to [8] the clock frequency offset can be esti-

mated from the k-th and l-th time stamp exchange by com-

puting:

t̃R,k − t̃A,l

tR,k − tA,l

=

(
1 +

ξR,k + ξA,l

tR,k − tA,l

)
ω. (3)

From eq. (3) it is obvious that the influence of the transmis-

sion times ξR,k and ξA,l vanishes with an increasing temporal

distance between tR,k and tA,l.

Depending on the chosen indices k and l the term (ξR,k +
ξA,l)/(tR,k − tA,l) can be positive or negative. In [8] the

author proposes to use a minimum and a maximum search

across all combinations of time stamp transmissions to find

those indices, for which the term assumes either the smallest

positive or the largest negative value. In informal experiments

we found that the influence of the temporal distance between

the time stamp exchanges is very large such that the min/max

search usually selects the time stamps with the largest tem-

poral distance. We therefore decided to transmit time stamp

pairs only occasionally, where the choice of temporal distance

between two successive exchanges k and k + 1 must strike a

balance between the contradicting requirement of having a

large distance to have the right-hand side of (3) as close to

ω as possible, and the requirement to track the time variant

clock skew. By this both the computational effort and the data

rate for time stamp exchange could be significantly reduced

compared to [8] with only marginal impact on the quality of

the estimate.

A clock frequency offset estimate is obtained from two

consecutive time stamp exchanges by first computing

∆t̃+

∆t+
=

t̃R,k+1 − t̃A,k

tR,k+1 − tA,k

=

(
1 +

ξR,k+1 + ξA,k

tR,k+1 − tA,k

)
ω (4)

∆t̃−

∆t−
=

t̃R,k − t̃A,k+1

tR,k − tA,k+1

=

(
1−

ξR,k + ξA,k+1

|tR,k − tA,k+1|

)
ω. (5)

An estimate of the clock frequency offset is now obtained by

ω̂ =
∆t̃+ −∆t̃−

∆t+ −∆t−
(6)

=

(
1 +

(ξR,k+1 − ξR,k) + (ξA,k − ξA,k+1)

(tR,k+1 − tR,k) + (tA,k+1 − tA,k)

)
ω. (7)

Note that the first summand in the numerator of the fraction in

eq. (7) is always positive, while the second is negative. Thus

they partly cancel each other. If further the denominator is

fairly large, a good estimate for ω can be obtained.

3. ERRORMODEL

In Fig. 2 a measured histogram of frequency offset errors

(blue curve) form a wireless 802.15.4 link is depicted. For

this experiment we connected the same oscillator to two sen-

sor nodes, such that both run on the same sampling frequency,

2
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i.e., with zero frequency offset. Then we used the time stamp

exchange algorithm on the wireless link between the nodes to

estimate the frequency offset. What we then measure is the

estimation error of the time stamp exchange algorithm.
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Fig. 2. Observation error distribution from experimental re-

sults (true value was 0, approximately 6 hours of data)

The characteristic structure of the frequency offset er-

ror can be explained as follows. The time stamp exchange

over a wireless interface introduces at times additional non-

symmetric latencies during the transmission. Reasons can

be packet losses, protocol dependent wait states or the re-

quirement to wait for the medium access control to begin the

transmission. These effects introduce large frequency offset

errors which are much larger than errors introduced by, e.g.,

the temporal drift of the crystal oscillators. These ”large

scale” errors are essentially discrete in nature: the trans-

mission protocol may introduce an integer number of wait

states, and they can be either positive or negative. The large

scale errors are superposed by ”small scale” errors, which are

caused by the aforementioned temporal drift or by the spread

of nominal frequency between two crystal oscillator devices.

Fig. 2 suggests to approximate the histogram by a Gaus-

sian mixture model (GMM)

p(vo) =
N−1∑

n=0

γnN (vo;µn,o, σ
2
n,o) (8)

where N (vo;µn,o, σ
2
n,o) denotes a Normal distribution, µn,o

are the means, σ2
n,o are the variances and γn are the weights

of the GMM. The GMM is depicted in red in Fig. 2.

4. KALMAN FILTER

A simple kinematic model is employed in a Kalman filter to

model oscillator frequency drifts. The two dimensional state

vector x = [ω,∆ω]T consists of the current clock frequency

offsetω and its first derivative∆ω. The state equation is given

by

x(n+ 1) =

[
1 T
0 1

]

︸ ︷︷ ︸
F

x(n) +

[
1 0
0 1

]

︸ ︷︷ ︸
G

·

[
0

vs(n)

]

︸ ︷︷ ︸
vs

(9)

with vs(n) being zero mean white Gaussian noise of variance

σ2
s , T being the time interval at which the time stamp ex-

change algorithm delivers estimates. The covariance matrix

of the system noise is given by Qs = E[vsv
T
s ].

The observation equation is given by

z(n) := ω̂(n) =
[
1 0

]
︸ ︷︷ ︸

HT

x(n) + vo(n) (10)

with vo being the observation noise, whose probability den-

sity function (PDF) is given by eq. (8) and can be estimated

in advance from the experiment described above.

The minimum mean square error (MMSE) estimate of the

systen state is then given by

x̂(n|n) =E[x(n)|z(1), . . . , z(n)] (11)

= x̂(n|n− 1) +K(n)·

·
(
z(n)−HT x̂(n|n− 1)− E[vo(n)]

)
(12)

where we assumed that the observation error can have

a nonzero mean. Here, K(n) is the Kalman gain and

x̂(n|n − 1) is the shorthand notation for the state estimate

at time instance n given all observations up to time instance

n− 1.

We now assume that the prediction of the Kalman filter

E[z(n)|z(1), . . . , z(n− 1)] = HT x̂(n|n − 1) is so close to

the true value ω that the contributions of large scale effects

to the observation error can be uniquely detected. In other

words, we assume that

|E[z(n)|z(1), . . . , z(n− 1)]− ω| ≪ δ, (13)

where δ is the minimal distance between two mixture compo-

nent means:

δ = min
k,l

|µk,o − µl,o| . (14)

Then the large scale error can be identified by finding that

mixture component that is closest to the prediction

k̂ = argmin
k

|E[z(n)|z(1), . . . , z(n− 1)]− µk,o| (15)

and removed by subtracting the mean of the identified mixture

component, µ
k̂,o

, from the observation

x̂(n|n) = x̂(n|n− 1)

+K(n)
(
z(n)−HT x̂(n|n− 1)− µ

k̂,o
]
)
. (16)

The experimental results presented in Section 5 indeed con-

firm that the assumption on the preciseness of the prediction

is justified. The purpose of the Kalman filter is to account for

the small scale errors. This results in a rather narrow filter

bandwidth, which in turn allows to detect large scale errors,

since they are much larger than the prediction error of the

Kalman filter. Essentially, we exploit the specific nature of

the observation noise, as depicted in Fig. 2.

According the the Kalman filter equations, the Kalman

gain K(n) can be calculated by

K(n) =
Σ(n|n− 1)HT

HTΣ(n|n− 1)H + σ̂2

k̂,o
(n)

(17)

with Σ(n|n) being the covariance matrix of the a posteriori

state distribution and Σ(n|n−1) being its prediction from the

3
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last time instance:

Σ(n|n− 1) = FΣ(n− 1|n− 1)F T +GQsG
T (18)

Σ(n|n) = Σ(n|n− 1)−K(n)HT
Σ(n|n− 1). (19)

5. EXPERIMENTAL RESULTS

5.1. Hardware platform

The hardware platform is a self development and it consists

of a set of network connected multi-channel acoustic sen-

sor nodes (see Fig. 3). Each node supports 16 channels,

which are synchronously sampled. We use a sigma-delta

analog-to-digital converter (ADC) with an oversampling fac-

tor of 512 to generate a 16 kHz sampling rate. The sampling

rate is generated by a direct digital sequence (DDS) circuit

driven by a 20MHz oscillator. The DDS internally increases

the oscillator frequency by a factor of 6 to an internal fre-

quency of 120MHz. The DDS enables the generation of

arbitrary frequencies with sub-herz resolution (quantization

120MHz/(232) = 0.0279Hz, which equals 0.003 41ppm at

16kHz with 512 oversampling).

Oscillator
Crystal

DDS

ADC

Network

DSP

MPU

Mics

Oscillator
Crystal

DDS

ADC

Network

DSP

MPU

MicsNode B

Transceiver
802.15.4

Node A

Transceiver
802.15.4 T

im
e 

st
am

p
s

Fig. 3. Acoustic sensor network hardware components

A built-in hardware counter on the microprocessor unit

(MPU) counts the oscillations of the DDS and uses this in-

formation as a time stamp. This enables a precise time stamp

generation with low latency and jitter.

The MPUs of two sensor nodes exchange the time

stamps via a wireless link using an IEEE 802.15.4 com-

patible transceiver (MAC & physical layer). Based upon

the exchanged information the MPUs can estimate the clock

frequency and phase offset and subsequently readjust the

DDS such that the slave DDS generates the same sampling

frequency as the master DDS. Although both nodes have

different crystal oscillators the two DDS will generate ap-

proximately the same sampling frequencies.

5.2. Wired connection

In our first experiment we employed two sensor nodes which

were connected via a wired USART connection. This con-

nection introduces an observation error which can be approx-

imately modeled by a single Gaussian distribution with zero

mean. The above discussed algorithm to estimate the clock

frequency offset and a Kalman filter (implemented on the

MPUs) were used to adjust the oscillator of the slave node.

An additional hardware device counted the oscillations of the

DDS output signal of both nodes (≈ 8.192MHz) and com-

puted the difference between them.
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Fig. 4. Experiment using wired USART connection between

two sensor nodes for time stamp exchange

In Fig. 4 the results of the experiment are shown. Within

the observation time of 60 hours the maximum difference

was kept below 250 oscillations, which equals a maximum

sampling error of half a sample (note the oversampling

factor of 512!). Thus, the proposed idea of using a time

stamp exchange for synchronizing two sensor nodes and the

DDS/MPU curcuit seem to deliver suitable results, if the

frequency offset error estimate is reliable enough.

5.3. Wireless connection

In the second experiment the two nodes are connected via an

IEEE 802.15.4 link which results in an observation error dis-

tribution as depicted in Fig. 2.
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Fig. 5. Kalman filter results for frequency offset error esti-

mates using a wireless 802.15.4 connection (no sampling fre-

quency readjustment)

We estimated the GMM from training data in the man-

ner described in Section 3 and used it within the proposed

Kalman filter. From Fig. 5 it is obvious that the new approach

is well suitable to track the frequency offset error, although

the observation error is several orders of magnitude larger

than the tracked signal. Note, that the ground truth value was

measured via an extra hardware device counting the oscilla-

tions of both nodes and that in this experiment we did not

adjust the DDS. The mean square error was measured to be

0.0019ppm.

In Fig. 6 the results of a third experiment are shown. Here,

the Kalman filter state estimates are used to adjust the DDS of

the slave node such that it aligns with the sampling frequency

4
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Fig. 6. Difference in oscillations using a Kalman filter on

a wireless 802.15.4 connection (active readjustment of sam-

pling frequency)

of the master node. As can be seen from the figure, the feed-

back control loop is able to keep the absolute difference be-

tween the two data streams below 180/512 = 0.35 samples.

The exchange of the 64-Bit time stamps with an inter

time stamp delay of 10 s generates a moderate data rate of

4 · 64Bit/10 s = 25.6Bit/s. Thus, the proposed approach

seems to be applicable to larger networks with multiple nodes.

5.4. Impact on Localization

The presented experimental results have the following impact

on a localization task. From Fig. 4 we can infer that the dif-

ference between the two data streams remains below a limit

of 250 oscillations which, when divided by the oversampling

factor of 512, gives a maximum difference of 250/512 ≈
0.49 samples. With an inter microphone distance of 0.2 m and

the acoustic source signal impinging from the endfire position

it takes 9.4 sampling intervals for the signal to travel from the

first to the second microphone, as stated in the introduction.

Hence, the maximum error of 0.49 samples corresponds to a

maximum angle error of 4.69◦. In the first 40 hours of the

wired experiment the difference remained even in an area of

50 oscillations equaling an error of less than 1◦.

In Fig. 6 the results from the wireless connection are de-

picted, where the difference of oscillations between two nodes

is kept below a value of 180 oscillations. This equals an angle

error of less than 180/512 · 90◦/9.41 = 3.36◦.

The results of the experiments reveal that the chosen ap-

proach is able to keep the data streams well aligned. How-

ever, a clock phase compensation may further improve the

results by first detecting the difference in oscillations and sub-

sequently reducing it.

6. CONCLUSIONS

We have proposed a Kalman filter approach for post filter-

ing the clock frequency offset estimates between two nodes

of an acoustic sensor network. The filter exploits the charac-

teristic properties of the estimation error in clock frequency

offset estimation in wireless sensor networks. The synchro-

nisation algorithm has been implemented on microprocessor

units which communicate via an IEEE 802.15.4 wireless net-

work at a low data rate. The estimated clock frequency offset

is used to readjust the sampling frequency generator of one

node such that the nodes sample the signals at approximately

the same rate. In long term experiments the maximum differ-

ence between two data streams were kept below a maximum

of half a sample.
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