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ABSTRACT 

Angle and velocity are two primary radar parameters where 

resolution improvements are mostly needed, for detection of 

targets in complex environments (e.g. multiple targets, 

severe and wide-spectrum clutter). In this paper, techniques 

for improving resolution in velocity and angle through 

widening of the instantaneous bandwidth are examined, and 

the possibility of complementing such solutions with high 

resolution processing is emphasized, with two illustrating 

examples: wideband MTI (Moving Target Indicator) radar, 

and multiple transmissions system. 

Index Terms— Radar waveforms, Digital Beam 

Forming, Space-time coding, Space-time adaptive 

processing, Waveform diversity, MIMO. 

1. INTRODUCTION 

Most radars divide their observation space along 3 or 4 

coordinates: angle (1 or 2 coordinates), range, and velocity, 

and it is well-known that resolution in angle depends on the 

spatial extent of the antenna, resolution in range depends on 

the instantaneous bandwidth, and resolution in velocity 

depends on the coherent integration time. 

So, improving angular resolution makes the radar bulky, 

and improving velocity resolution makes it slow, whereas 

improving range resolution makes it …costly (essentially 

for the receiver channels). 

Interestingly though, what radar systems are really 

lacking is mainly: 

1. angular resolution, since at long ranges the angular 

separation, expressed in meters, is at least 10 times 

poorer than the range resolution; Angular resolution is 

also needed for strong targets rejection when looking 

for small targets; 

2. velocity resolution, for improving slow targets detection 

against clutter and other targets. 

So, the two parameters where improvement would be 

most appreciated – angle and velocity – also have the most 

severe consequences on the physical characteristics of the 

system – bulkiness and reaction time.  

That is why very often, improving range resolution 

(through bandwidth widening) is actually the only way to 

mitigate poor resolution in the other domains, separating the 

targets and reducing the clutter level for the most difficult 

situations – especially for situations where multiple slow 

targets and heavy clutter are encountered, such as ground or 

sea surveillance. 

In this paper, we will examine how this track can be 

followed one step further: actually improving angular and 

velocity resolution – and rejection of interfering signals –  

through bandwidth widening. Two concepts will be 

analyzed: wideband non-ambiguous waveforms, and 

multiple simultaneous transmissions (or coherent MIMO). 

2. WIDEBAND MTI 

2.1 Principle 

An essential limitation for standard radars using bursts of 

periodic pulses
1
 comes from pulsed radar range-Doppler 

ambiguity relation, which states that the ambiguous speed 

Va and the ambiguous range Da are related by:  

Da . Va = � . c / 4  (λ  being the wavelength) 

This relation means that many ambiguities, either in 

range or speed (or both), have to be dealt with, which in turn 

implies the transmission of successive pulse trains with 

different repetition frequencies, requiring more time to be 

spent on target for ambiguity and blind speeds removal. 

An alternative solution is obtained by increasing the 

range resolution, (or the instantaneous bandwidth) so that 

the moving target range variation (rangewalk) during the 

pulse train becomes non-negligible compared with the range 

resolution –  which is equivalent to stating that the Doppler 

shift is varying across the whole bandwidth (compared with 

the Doppler resolution), and can not be considered as a 

global frequency shift any more – : such radars may use 

bursts of wideband pulses, with low Pulse Repetition 

Frequency (no range ambiguities) such that the rangewalk 

phenomena during the whole burst is significant enough 

(compared with the range resolution) to remove the velocity 

ambiguity. It then becomes possible to detect the target and 

measure range and speed with only one coherent pulse burst. 

The ambiguity function, and the clutter rejection 

capability of such radars have been analyzed in simulations  

                                                 
1 The use of a non-periodic pulse train, sometimes advocated for 

mitigating this ambiguity, has been shown [1] to bring much more 

severe drawbacks, especially when multiple second trace echoes 

are received from strong and distant clutter echoes. 
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[1] and experimental results have demonstrated the 

feasability of the approach [2]. 

The condition for wideband situation is written, if P is 

the number of pulses in the pulse train, Tr=1/Fr the 

repetition period, Va the standard ambiguous velocity (Va

=λ/2Tr), ∆F the instantaneous bandwidth, and δR the range 

resolution [δR = c/(2∆F)]: 

F

F
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where F0=c/λ is the central carrier frequency. For example, 

a burst of 50 pulses at 10 GHz carrier frequency and 1 kHz 

repetition frequency (Va = 15 m.s
-1

) with 500 MHz 

bandwidth (δR = 0.30 m) would be a possible candidate for 

non-ambiguous MTI detection, since the migration is then 

15. 50.10
-3

 = 0.75m, significantly larger than the 0.30m 

range cell. 

If xp,t is the signal received from the p
th

 pulse, at t
th

 time 

sample, the quantity to be compared to the threshold, taking 

into account the range migration from pulse to pulse, for 

hypothesis t  in delay (range) and V  in velocity, is [1]: 
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with Γ(u) the nearest integer from u. 

This processing should also be followed by a non-coherent 

integration along t , for an assumed length of the targets of 

interest, in order to recover the totality of the energy 

scattered by the target (this post-integration is also providing 

the usual diversity gain, as explicited in [1]). 

2.2 Velocity and angular resolution 

For comparing two radars, one with standard range 

resolution,  for instance 75m (corresponding to 2 MHz 

bandwidth), and another with high resolution, 30cm,

obtained by an instantaneous bandwidth of 500 MHz, some 

basic assumptions should be made regarding the waveforms. 

The two radars will be assumed to operate in X band, for 

medium/long range surveillance at 100 km. The narrow-

band radar typically requires 5 successive bursts of 10ms 

each for blind speeds (every 15 m.s
-1

) and velocity 

ambiguity removal, with repetition frequency 1 kHz (non-

ambiguous in range). Within the same illumination time, the 

wideband radar previously sketched (Fr=1kHz, δR = 0.30 

m) would use one coherent burst of 50ms, providing a 

theoretical velocity resolution of 0.3 m.s
-1

. 

With this wideband radar, extended targets can be 

resolved in angle [1], using monopulse measurements as 

shown in Figure 1. Since an angular measurement can be 

made in each range cell, if the SNR allows, then the 

histogram of ecartometry measurements on an extended 

target will provide the information that two targets are 

present and their respective angular locations; 

Schematically, the angular resolution comes down to the – 

much better – angular accuracy. 

With these baseline parameters, the following properties 

can then be stated: 

1. The velocity resolution is improved by a factor 5, 

due to the 5 times longer coherent integration time; 

2. The benefit of frequency diversity, obtained for the 

narrowband radar by varying the carrier frequency 

from burst to burst, is also obtained (as explained in 

detail in [1]) in the wideband case by non-coherent 

integration along the impulse response of the target; 

3. Angular resolution is significantly improved (a 

factor 5 might be a reasonable estimate), through 

analysis of angular measurements in the range cells 

covered by the impulse response of the target. 

Figure 1: Wideband angular resolution 

This brief overview shows that significant improvements 

can be expected from widening the bandwidth, regarding 

both angular and velocity resolution and ambiguities, 

without changing the physical dimensions of the antenna nor 

the illumination time. To these improvements should also be 

added, of course, the benefits of range resolution itself, for 

instance for target classification – a function for which high 

velocity resolution is also required. 

2.3 Higher resolution: discussion 

It must be emphasized that, unlike high resolution signal 

processing techniques, these gains in resolution are obtained 

without any assumption about the number of targets, the 

characteristics of clutter, or their nature (point scatterers vs 

distributed echoes, both for targets and clutter). 

On top of these improvements, one can also imagine 

application of high resolution adaptive processing 

techniques to the range-velocity analysis in the wideband 

situation. However, improving the velocity resolution 

beyond 0.3 m.s
-1

, as obtained at the beginning of Section 

2.4, might prove to be an illusory gain, since non-

stationarity of the target can be expected to become the 

limiting factor. 
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Though much work still has to be done regarding 

wideband radars – especially on clutter suppression and 

angular resolution – it is clear that this path towards high 

resolution radar is a very promising one, for small targets 

detection and classification in adverse environments. 

Further discussions on the advantages and drawbacks of 

such radars can be found in [1] – attention has been focused 

here on the less well-known properties in terms of velocity 

and angular resolution. 

Regarding the field of application of high resolution 

techniques, one question remains open: can the required 

bandwidth for obtaining these benefits in angle and velocity 

be minimized, through the use of high resolution 

techniques? In lack of experimental results, we will leave 

this question open… 

3. SPACE-TIME CODING (COHERENT MIMO) 

For radar systems using multiple simultaneous 

transmissions, bandwidth widening will be shown to be a 

solution for improving Doppler and angle resolution. 

3.1. Principle 

Standard digital beamforming is a procedure where wide 

angular sector instantaneous coverage is obtained with a 

wide beam illumination on transmit (transmission through 

one subarray), and directive beams are formed on receive 

through coherent summations of signals received on 

different subarrays, in parallel for each direction. 

Digital beamforming generally does not essentially 

change the power budget, compared to standard focused 

exploration, since the lower gain on transmit (due to wider 

illumination) is traded against a longer integration time 

(made possible by the simultaneous observation of different 

directions). In fact, the main benefit provided by digital 

beamforming is an improved velocity resolution, especially 

useful for identification purposes, or for detection of slow 

targets. 

Figure 2: Radar exploration of space. 

However, this velocity resolution comes at a cost: the 

non-directive beam on transmit, which induces a poorer 

rejection of echoes coming from adjacent directions. For 

airborne applications, a severe limitation arises from the 

clutter spreading in Doppler, due to the wider beam on 

transmit: this leads to a poor minimum detectable velocity, 

and to a poor clutter rejection, since only half the dBs are 

obtained, compared to focused beam illumination. 

In order to recover this angular separation on transmit 

(which was basic to standard focused beam techniques), it is 

necessary to code the transmitted signals (space-time 

coding), such that the signals transmitted in the different 

directions be separable on receive (Figure 2). 

3.2. Space-time coding 

An example of such coding is well-known: it consists of 

using a dispersive antenna, which effectively sends different 

frequencies in the different directions. The different 

frequencies are then separated on receive, and digital 

beamforming is performed as usual for each transmitted 

beam/frequency. 

A space-time coding which produces the same effect in a 

more flexible way uses a circulating signal, which can be 

any complex waveform (e.g. code or chirp) having good 

auto-correlation properties – which is normally obtained 

with a large time-bandwidth product. s(t) is “circulating” 

along the array if the n-th channel signal s
n
(t)  is (Fig. 3): 

s
n
(t) = s(t-(n-1)∆t),   (2) 

where n=1, 2, ..N, ∆t is a 1-sample time shift, ∆t = 1/∆F, 

where ∆F is the bandwidth of the circulating signal s(t). For 

signals with a large time-bandwidth product, the relative 

time shift is very small compared to the pulse duration Tp, 

since ∆t= Tp / ∆F Tp = 1 / ∆F. 

Figure 3: Space-time circulating signals. 

3.3. Transmit ambiguity function 

In order to make a fair comparison between space-time 

coded systems and standard ones [4,5], it is necessary to 

examine their ambiguity functions (only systems with 

similar ambiguity functions should be directly compared).  

The signal transmitted in a given direction θ0 is the sum 

of all transmitted signals, from antennas positions ( )nx
�

, with 

appropriate phase shifts for this direction defined by the 

wave vector )( 0θk
�

  : 

3
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θθ    (3) 

The signal received by a target in this direction θ0, at 

range cτ0/2, is written: 
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We assume here that there is no Doppler effect during 

the duration of one pulse (Doppler effect will then be 

processed, as usual, from pulse to pulse). 

The signal received by one antenna element at position  

( )rx
�

is written s(t,θ0): 

( ) ( ) ( ) ( ) ( ) ( )0

1

00 ., 000 τθ θθϕ −= �
=

tseeeAts n
T

N

n

nxkjrxkjj
����

  (5) 

The received signal is processed, as usual, through 

matched filtering for every possible position (τ,θ)  of an 

expected target, thus providing, to within an unsignificant 

complex coefficient, the output function ( )θτχθ ,
0

:  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )�� +=

=
=

−
dttstse m

T
n
T

N

m
n

mxknxkj *

1
1

., 0

0
τθτχ θθ

θ

����

(6)

The ambiguity function ( )
2

,
0

θτχθ  is thus a 3-

dimensional function, giving for each aiming direction θ0

the delay-angle ambiguity. 

For complete analysis, it would also be necessary to take 

into account the beamforming on receive – coherent 

sumation on the different receiving channels –, and the 

coherent integration (Doppler filtering) from pulse to pulse. 

However, the gains and properties of those two operations 

are well-known, and the added clutter rejection and target 

separation they provide is unaffected by the transmit 

beamforming analyzed here.  

For analysis of the “transmit” ambiguity function 

( )
2

,
0

θτχθ , it is useful to consider two bi-dimensional cuts 

of this ambiguity function, expressed in the following 

figures as functions of cosines and range variables: 

• ( ) ( )0

2
,,0

0
θθθχθ D=  which is the angular transmit 

diagram (at the exact range of the target), as a function 

of the angular aiming direction θ0 ,  

• and ( )
2

,
0

θτχθ , which is the delay (range) - angle 

ambiguity function, for boresight aiming direction – 

Ideally, this delay-angle ambiguity function should also 

be analyzed for each possible aiming direction θ0: such 

results are not presented here, but simulations have 

shown that the variation with angle θ0 is not very 

significant. 

More details and illustrations about the use of ambiguity 

functions for space-time coding systems are provided in [5]. 

3.4. Example: time-shifted chirps 

The antenna array is made of N=8 elementary 

omnidirectional antennas, spaced λ/2 from each other, the 

carrier frequency is 10 GHz, and the time-bandwidth  

product ∆F Tp is 256, with 100µs pulse length. 

Figure 4 examines the case of a circulating chirp, with 

the following characteristics: 

Pulse duration Tp = 100 µs 

∆F Tp  product = 257 

Time shift ∆t  between adjacent chirps:  

∆t = Tp / ∆F Tp  = 0.4 µs 

These chirps are an example of a “circulating code” [3] – 

the same chirp, with time origin shifted from 0.4 µs, from 

antenna to antenna. 

Figure 4: Frequency-time representation of multiple 

circulating chirps; 

  
Figure 5: Multiple chirps (circulating code): Cuts of the 3-D 

ambiguity function at τ=0 and at θ0=0 (angle-angle and 

angle-range cuts). 

The obtained ambiguity function (Fig. 5) has two very 

nice properties:  

1. A very stable level as a function of aiming direction 

θ0, meaning that the energy has been evenly 

distributed across the whole angular domain – as in 

the case of focused beam systems; 

2. A very clean range-angle ambiguity function 

(rejection higher than 40 dB over most of the 

domain). Similar properties, analog to the case of 

4
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standard focused beam systems, are obtained for 

many different types of circulating codes. 

But the ambiguity function also shows the price paid for 

this clean ambiguity function: the range resolution 

(thickness of the horizontal line in the angle-range cut) is 

degraded by a factor equal to N, the number of antenna 

elements – just because of the dispersivity previously 

described: in each direction, only the fraction 1/N of the 

bandwidth is sent, thus degrading the range resolution by a 

factor N, as illustrated on Figure 6 for a 4 elements array. 

Figure 6: Multiple chirps (circulating code): Cut of the 3-D 

ambiguity function at θ=0 and θ0=0 (range profile) for a 

widened beam with no coding, and a circulating code, with 

4 elements antenna. 

Comparing this multiple transmission radar with a more 

standard radar using a wide beam on transmit – for which 

the ambiguity function would have the same general 

characteristics, but with a range resolution N times better – , 

it appears that space-time coding has allowed to trade the 

angular resolution on transmit against range resolution.  

In other words, for this space-time coding, increasing the 

bandwidth on transmit by a factor N is a way to obtain the 

full angular resolution (and associated rejection of strong 

echoes) on transmit, while keeping the original range 

resolution, in comparison with the wide beam standard 

illumination (no angular resolution on transmit). Since the 

final angular resolution is the geometric mean of the 

transmit and receive resolutions (product of the diagrams, 

for gaussian beams assumption), the final angular resolution 

is improved by a factor 2 . 

Coming back to the very basic focused beam system 

described on the top of Figure 2, we can also compare this 

radar with the wide-beam space-time coded radar just 

described: it then appears that, globally, we have improved 

the Doppler resolution of the radar (and slightly the angular 

resolution), and kept all other characteristics (angular 

rejection, range resolution and rejection) equal, by widening 

the bandwidth of the same factor. For each pencil beam 

radar with active antenna, it is possible to improve the 

Doppler resolution at the cost of widening the bandwidth – 

ceteris paribus. This very simple relation, though quite 

unsettling at first for any radar expert, opens ways for future 

modes dedicated to slow targets detection and analysis. 

Moreover, as in the previous analysis of wideband 

radars, it must be emphasized that, contrary to high 

resolution processing techniques, these gains in resolution 

are obtained without any assumption about the number of 

targets, the levels or spectra of clutter, or their nature (point 

scatterers vs distributed echoes, both for targets and clutter). 

3.5. Higher resolution: discussion 

The previous discussion has shown that widening the 

bandwidth is a way for improving the Doppler resolution, or 

the angular resolution (depending on the terms of 

comparison), even in the presence of multiple interfering 

echoes.  

This is clearly not a reason for waiving the benefits that can 

be provided by high resolution processing techniques: these 

benefits also apply to the signals collected after space-time 

processing, since space-time processing just comes down to 

a coherent summation of received signals. This statement is 

true for circulating chirps – more detailed analysis might be 

required for other types of coding, such as phase coding 

along the antenna, for which stationarity of the signal in 

time or space is not satisfied.  

For instance, STAP processing could also be applied, after 

circulating codes on a linear airborne array, for improving 

detection of air or ground targets from airborne platforms. 

4. CONCLUSION

The gains in angle and velocity resolution that can be 

obtained through bandwidth widening have been exhibited 

in two typical situations: wideband radar signals for 

unambiguous detection, and wide beam observations with 

space-time coding. The complementarity of such solutions 

with high resolution processing techniques has been 

emphasized, showing that modern signal processing is part 

of the global optimization of radar systems. 
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