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ABSTRACT 

 

 

In this paper, we propose a method for underwater 

inhomogeneities characterization using sparse representation 

of channel’s impulse response. We consider the case of 

moving vortices created naturally or artificially that do not 

conserve their physical properties when observed at two 

distinct positions in space. Existing amplitude–based 

techniques fail to provide an accurate representation when 

the physical properties of the dynamic inhomogeneity are 

altered, but it can be achieved using the decomposition of 

the inhomogeneity’s impulse response, based on a 

physically driven decomposition basis. Tests carried out in a 

reduced scale experimental facility show, on real data, the 

efficiency of the inhomogeneities tracking.  

 

Index Terms— sparse representation, underwater 

acoustics, inhomogeneity, decomposition. 

 

1. INTRODUCTION 

 

The dynamics of underwater phenomena can be understood 

as the propagation of vortices produced either naturally 

(natural inhomogeneity embedded in water flow, marine life 

such as fish and mammals) or artificially (underwater 

obstacles, submarines, vessels). These vortices are detected 

and analyzed using pairs of acoustic transducers. If a vortex 

intersects the path between two pairs of active transducers, 

the signatures observed on the received signal’s amplitudes 

are quantifiable. However, specific phenomena associated to 

the context alter the signature when the inhomogeneity 

travels to another pair of transducers and thus the similarity 

between the two signatures is poor.  

      An alternative is to decompose the impulse responses 

corresponding to the two transducers pairs on basis of 

elementary functions. In order to adapt the basis to the 

context of our application, two concepts are studied in this 

paper. First, we propose to design a decomposition basis 

inspired by the physical characteristics of the vortex “seen’ 

by the impulse response of two propagating acoustic paths.     

      The second concept is the one of the sparse 

representation [1]: the analyzed phenomena can be 

recovered only using some of the decomposition 

coefficients that are relevant with respect of the 

minimization criterion, thus obtaining a sparse 

representation of the phenomena. At this level, we show the 

interest of the L1 norm.  

      The article is structured as follows: section 2 presents 

the theoretical concepts used in our work: waveform 

decomposition and sparse representation. Section 3 presents 

the main results and remarks of our work and section 4 

presents the concluding remarks and future work.  

 

2. DECOMPOSITION BY SPARSE REPRESENATION 

 

The general layout of the analyzed phenomena is illustrated 

in figure 1. Wide band signals are transmitted using two 

pairs of sensors placed on the Upstream and Downstream 

sides. 

      In the absence of inhomogeneity (such as a vortex), 

there are no changes in the shape of the impulse responses 

of the channels defined by the two pairs of transducers. The 

apparition of the inhomogeneity between the transducers 

introduces modifications on the amplitudes of the impulse 

responses, calculated for each transmission, a fact that can 

be seen as signatures of the inhomogeneity’s source (figure 

2).  

      However, the vortex can change the characteristics while 

moving from one pair of sensors to the other, the similarity 

of the two signatures is low and can be considered as 

belonging to two different phenomena. This drawback can 

be eliminated using a decomposition of the two signatures 

based on a physically driven basis. That is, the 

decomposition attempts to highlight the common elements 

that will allow us to identify the inhomogeneity. 

      Considering the emitted signals from figure 1, se1(t) and 

se2(t), as two linear frequency modulations, described by the 

following equation: 

 

                          
   

 
   ,         (2.1) 
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Figure 1. Vortex travelling with the flow of water  

 

Figure 2. The signature of an inhomogeneity on the 

envelope of the impulse response.  

 

where ω0 + γt is the linear frequency variation law. The 

received  signals sr1(t) and sr2(t)  for each transducer can be 

expressed, ignoring the noise, as: 

 

                       

                     ,                   (2.2) 

 

where τ is the propagation time of the vortex between the 

emission and reception transducers. The envelopes Ar1 and 

Ar2 in equations (2.2) contain the information about the 

inhomogeneity evolution. We calculate the impulse 

response of the system for each transmission by correlating 

the received signal with the emitted one [2]: 

 

                               
 

  

    

                              
 

  
        (2.3) 

 

      As it can be seen from figure 2 (envelopes of impulse 

responses are shown for a better understanding of the 

phenomena), the signature left by a vortex is localized just 

after the main peak of the impulse response. However, the 

extraction of this signature must take into account the fact  

 

 
Figure 3. Decomposition principle of an inhomogeneity 

extracted from an impulse response. 

 

 
Figure 4. The contraction of the impulse response envelope 

due to the dynamic vortex. 

 

that due to occurring reflection of echoes, a secondary much 

smaller peak appears (figure 3).   

     This representation of the signature (amplitude data) 

cannot reveal accurate amount of information regarding the 

physical properties of the vortex. Therefore, we propose the 

analysis via a decomposition using an appropriate basis 

function constructed from an initial function having an 

amplitude variation similar to the one introduced by the 

vortex (see figure 3).   

      The basic principle of the decomposition is illustrated, 

using real data, in figure 3. Step one of the sparse 

representation consists in constructing the elements of the 

initial basis which is the same for both hr1(t) and hr2(t), with 

a zero mean and a rapid decrease. The basis starts from an 

initial waveform ψ0, which is a modulated sine wave 

centered on the resonance frequency of the transducers as 

illustrated in equation (2.4): 

 

                    ,                    (2.4) 

 

where ω0 corresponds to the  resonance frequency of the 

transducers. The term A(t) represents the amplitude 

modulation produced by the dynamic vortex over the 

impulse responses. The choice of this term is based on the 

physics of the vortex: from one path to another, the 

envelopes are similar, but due to the heterogeneity induced 

by the vortex the shape of the envelope suffers a contraction 

2
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in time (figure 4). Thus, the choice of A(t) is made from the 

envelopes of the impulse responses that are affected the 

most by the inhomogeneity, in order to provide an 

physically adapted basis for the decomposition. As the 

inhomogeineity progresses through water, it keeps on 

enlarging due to its inertial character [3] and its energy 

decreases with distance.  

      Having defined the initial waveform we construct a set 

of functions that are shifted in time and scale, according to 

the continuous wavelet analysis, thus creating a dictionary 

of elementary functions, at different scales, shifted in time: 

 

        
 

  
   

   

 
                     (2.5) 

 

where N is the maximum decomposition resolution,  s and u 

are, respectively, the scale and shift parameters of the initial 

waveform ψ0. The envelopes of the impulse responses from 

the  Upstream side will be more contracted in time than the 

ones from the Downstream side. The reason for selecting the 

initial waveform among the impulse responses where the 

envelope’s contraction is the highest resides in the 

decomposition process. The impulse responses will match 

the initial waveform ψ0 at different scales highlighted by the 

s parameter in (2.5). 

      The representation that we wish to obtain for hr1(t) and 

hr2(t) can be written, using the resulting coefficients, as 

follows [4] : 

 

             
     

 

   

 

             
                                    

 

   

 

 

where      
 and     

  are the N resulting coefficients for the 

decomposition with the best ψi basis for the two impulse 

responses. The      
 

 and     
  coefficients represent the 

projection of the impulse function hr(t) on the ψi functions 

described in (2.4): 

 

    
                                   (2.7) 

       

      The second step of the sparse optimization consists in 

minimizing the number of coefficients obtained from the 

decomposition. This is defined as a problem of 

minimization [1] with solutions derived from convex 

optimization [5].  

      In the case of the inhomogeneity estimation, a possible 

solution to the problem can be formulated as follows [6]: 

quantify the impact of each coefficient - basis pair between 

the two estimated inhomogeneitis, in our context, and 

minimize the number of coefficients needed to construct two 

signatures h
*

r1 and h
*

r2 with minimum errors.  

       Based on (2.6), we calculate a  residual for each  one  of 

 
Figure 5. Variation of the L1 and the L2 norms. 

 

the N coefficients  (C
i,j

s,u) and its corresponding basis: 

  
              

   
    

 

   

                         

    

where RP
j
(t) is the residual calculated for the P

th
 coefficients 

of the decomposition. 

      In order to quantify the impact of each residual with 

respect to the decomposition and minimize the number of 

coefficients, we can use the L1 or L2 norm for each of the N 

residuals and select only the K coefficients corresponding to 

the number of coefficients for which the  norm is minimum 

[7]. We choose to use the L1 norm over the L2 norm because 

the former leads to fewer coefficients than the latter (figure 

5). The minima   points of the L1 norm correspond to the 

lowest number of coefficients used to represent sparsely the 

two signatures      and     : 

 

              
     

 

   

 

              
     

 

   

                               

 

     Since the basis of the decomposition is the same for both 

     and        , the two signatures will have a very strong 

resemblance, as it will be shown in the next sections.  

      

3. RESULTS 

 

The tests were carried out in our reduced scale experimental 

facility (figure 6). For our experiment, we used two pairs of 

1MHz transducers placed on the outer walls of the tank. The 

length of the acoustic path was 1 meter at a depth of 40 cm.  

     Wide band signals were generated with a linear 

frequency modulation between 800 kHz and 1.2 MHz, and 

were downloaded into a signal generator for transmission. 

The repetition rate of the signals was 1msec and the duration 

of the wide band signal is of 200 microseconds in order to 

avoid the overlap of echoes over the received signals. First, 

the pairs of transducers had to be set apart by a certain  
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Figure 6. Reduced scale experiment test bench. 

      

distance because of the occurrence of crosstalk caused by 

the wide beam angle of each transducer. 

      Reverberation was not an issue because water 

attenuation for 1MHz is high and the signal processing 

algorithms are capable to distinguish the received pings 

from echoes.  

      Water flow was created using the recirculation pump in 

order to provide a background inhomogeneity noise that 

would eventually superimpose over the simulated 

phenomena. Air was pumped through a tube submerged in 

the flow and the created inhomogeneity intersected the two 

acoustic paths.   

     The scale factor of s (decomposition basis parameter) 

was set to 0.01 due to resolution considerations and the 

initial waveform was selected among the zones extracted 

from the impulse response where the inhomogeneity had the 

strongest effect, thus creating a physically driven basis. 

Each received signal yielded a decomposition and a number 

of K coefficients was calculated using the L1 norm. It was no 

surprise that except for the moments where inhomogeneity 

was at its strongest, the number of coefficients used for 

decomposition remained constant.  

     We compare our results in two ways: first, we show a 

significant improvement with a typical representation 

technique consisting in calculating the maxima values of the  

impulse response corresponding to each transmission as 

illustrated in figure 7. This technique is used extensively in 

certain flow metering applications presented in [8] and [9] 

and is sensible to  interference  induced by the measurement 

conditions. 

      Secondly, we use the results presented in figure 7 to 

calculate the average flow velocity between the acoustic 

paths. The accuracy of estimating the average velocity 

depends on the precision of estimating the time delay 

between the two acoustic paths. This is done by computing 

the cross correlation of the two signatures (Upstream and 

Downstream), as illustrated in figure 8 (a zoomed region 

displaying the main peaks of the two cross correlations). 

      In the second subplot of figure 8, we see an enhanced 

similarity between the signatures for the two acoustic paths, 

which describes an initial dynamic and random vortex. This 

result is possible only because of the physically driven basis 

that was used in the decomposition.   

      The second value (the real value calculated after the 

decomposition, highlighted on the red dotted trace with the 

vertical black line) corresponds to the correct orientation of  

Figure 7. Inhomogeneity representation before and after the 

sparse decomposition. 

 

Figure 8. Flow velocity calculation using the cross 

correlation between the acoustic paths. 

 

the flow and a more pertinent 1.47 meters/second flow 

velocity is computed. Using the average flow velocities 

from multiple levels over a square section output the values 

of flow on that section. This is a very sensitive problem as 

results from the existing methods are biased by unfavorable 

conditions.  

      It is very important to keep in mind that the simulated 

conditions aimed also at testing the limits of the algorithm in 

terms of robustness.  

      Figure 8 shows that, by comparing with the initial 

estimation in figure 7, the sparse representation manages to 

provide a correct estimation of a inhomogeneity translated 

in space. 

      The purpose of sparse representation, as shown in [7], 

was to recover a signal using minimum number of 

coefficients from incomplete and altered measurements.  

      The use of wide band signals in inhomogeneities 

tracking was introduced previously in [8] as an alternative to 

transmitting pulses in flow metering applications for 

obstacle path correction. It has been shown at the time that 

transmitting large band signals with a bandwidth around the 

central frequency of the transducers can improve the 

inhomogeneity derived flow metering estimation in case of 

large obstacles passing between the transducers. 

Additionally, in [9] we concluded that the inhomogeneity 

analysis would benefit from wide band signals in the case of 

low inhomogeneity levels and for this purpose, appropriate 

representation spaces are required in order to get invariant 
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information about the inhomogeneity when “seen” from two 

(or more) spaced separated pints of view.  

 

 

4. CONCLUSIONS 

       

      In this paper,  we  proceeded  to  demonstrate  that 

sparse representation and adaptive decomposition  

techniques can be successfully  used to recover a  complete 

representation of inhomogeneity from incomplete and  

contaminated measurements (sparse  representation).   
      A small scale experiment consisted in generating 

inhomogeneity was carried out and wide band signals were 

used to highlight the passage of the inhomogeneity at two 

separated acoustic paths, all in the least favorable 

conditions.  

      Results obtained with our technique prove the 

theoretical concepts of sparse representation and adaptive 

waveform using large band signals. 

     Our work will focus in the future on combining adaptive 

waveform techniques with sparse representations aiming at 

finding a signal that is appropriate to underwater 

inhomogeneity estimation using an orthonormal 

decomposition basis.  
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