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ABSTRACT

In this work, we present a new sparse adaptive filtering algo-
rithm following a variational Bayesian approach. First, spar-
sity is imposed by assigning Laplace priors to the filter param-
eters through a suitably defined hierarchical Bayesian model.
Then, a variational Bayesian inference method is presented,
which is appropriate for batch processing. In order to intro-
duce adaptivity the Gauss-Seidel iterative scheme is properly
embedded in our method. The proposed algorithm is fully au-
tomatic and is computationally efficient despite its Bayesian
origin. Experimental results show that the algorithm con-
verges to sparse solutions and exhibits superior estimation
performance compared to related state-of-the-art schemes.

Index Terms— Adaptive filtering, variational inference,
Bayesian data analysis, Gauss-Seidel method.

1. INTRODUCTION

Adaptive filtering is considered a cornerstone in the modern
signal processing research field. Owing to its immense num-
ber of applications, it has been a major research area in earlier
decades. Nowadays, advances in the realm of compressive
sensing have revived the interest for the development of novel
adaptive filtering techniques that are tailored to the estimation
of sparse signals.

Many deterministic algorithms have recently been pro-
posed to address the problem of sparse adaptive filtering.
Capitalizing on the celebrated Lasso estimator, the sparse
analogue of the recursive least squares (RLS) algorithm has
been proposed in [1], where an expectation-maximization
(EM) algorithm is used to solve the time-varying optimiza-
tion problem. In [2] the LS cost function is also regularized
with the `1-norm of the parameter vector and coordinate
descent solvers are developed to estimate the sparse vector.
Greedy RLS-type algorithms have also received considerable

This research is cofinanced by the European Union (European Social
Fund ESF) and Greek national funds through the Operational Program ”Ed-
ucation and Lifelong Learning” of the National Strategic Reference Frame-
work (NSRF) Research Funding Program THALIS: Secure wireless nonlin-
ear communications at the physical layer.

attention in the adaptive filtering literature, e.g. [3]. More-
over, least mean square (LMS) type solvers are proposed in
[4], that also incorporate the `1-norm to enhance sparsity.

The main drawback of these methods is that their esti-
mation performance strongly depends on pre-determined or
cross-validated parameter values. To overcome this imped-
iment, statistical methods have recently been proposed for
the estimation problem at hand. By adopting the Bayesian
model of [5] and following a maximum a posteriori probabil-
ity (MAP) estimation procedure, a regularized version of the
RLS algorithm is described in [6]. A Bayesian treatment of
the problem is also presented in [7], where a computationally
demanding sliding window on line algorithm is proposed.

In this paper, we introduce a fast variational Bayesian in-
ference algorithm for adaptive filtering. To promote sparsity
we first define a suitable hierarchical Bayesian model that uti-
lizes Laplace priors for the filter weight parameters, Then, a
novel method for adaptive Bayesian inference is developed by
combining the iterative approximate variational scheme pre-
sented in [8] with the Gauss-Seidel (GS) recursive method
[9]. Due to the employment of the GS scheme, matrix inver-
sions are avoided and each coefficient of the adaptive filter
is updated separately in a computationally efficient manner.
Besides that, the proposed algorithm preserves all the advan-
tages of Bayesian methods, e.g. no need of tuning any param-
eters, computation of distributions of the parameters and not
just point estimates, etc. Experimental results show that the
proposed algorithm converges to the true sparse signal and ex-
hibits better estimation performance than other related state-
of-the-art algorithms.

Notation: Vectors are represented as boldface lowercase
letters, e.g. x, and matrices as boldface uppercase letters, e.g.
X, (·)T denotes transposition, ‖·‖ stands for the standard `2-
norm,N (·) is the Gaussian distribution, |·| denotes the deter-
minant of a matrix or absolute value in case of a scalar, Γ(·) is
the Gamma distribution or Gamma function, diag(x) denotes
a diagonal matrix whose diagonal entries are the elements of
x. Finally the i-th component of vector α is denoted by ai
and the ij-th element of matrix A by aij .
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2. PROBLEM FORMULATION

Let us consider the conventional adaptive filtering setup
consisting of a transversal filter of order N and an adap-
tation block. Using standard notation, the input of the
filter at time M is denoted by x(M) = [x(M), x(M −
1), . . . , x(M − N + 1)]T and the filter weight vector at
time M is ŵ(M) = [ŵ1(M), ŵ2(M), . . . , ŵN (M)]T . The
output of the filter at every time instant M is ψ(M) =
ŵT (M)x(M), and hence, the instantaneous error of the filter
is e(M) = y(M) − ŵT (M)x(M), where y(M) stands for
the noisy observed data. We assume that the data generating
process is described by

y(M) = wTx(M) + ε(M), (1)

where w is the true parameter vector that may or may not de-
pend on time and ε(M) is assumed to be zero mean Gaussian
with precision β, ε(M) ∼ N (ε(M)|0, β−1). The cost func-
tion typically minimized in LS filtering is an exponentially
weighted sum of squared e(i), i.e.,

min
ŵ(M)

M∑
i=1

λM−i|e(i)|2, (2)

where 0 � λ < 1 is the forgetting factor. Let X(M) be a
M ×N data matrix whose ith row is xT (i), i.e.,

X(M) =


xT (1)
xT (2)

...
xT (M)

 , (3)

y(M) = [y(1), y(2), . . . , y(M)]T , and Λ(M) = diag([λM−1,
λM−2, . . . , λ]). Then, the least squares optimization function
(2) can be written in vector notation as

min
ŵ(M)

‖Λ1/2(M)y(M)−Λ1/2(M)X(M)ŵ(M)‖2. (4)

Based on the input x and the data y, we wish to estimate the
parameter vector w, under the assumption that it is sparse,
i.e., only a few of its N parameters are nonzero. To this end,
we formulate the problem in the Bayesian framework and pro-
pose a fast adaptive variational Bayesian algorithm.

3. BAYESIAN MODELING

In the following in order to simplify derivations we omit the
time indexM , which shall be retrieved when introducing time
recursions in Section 4.1. To establish our Bayesian approach,
we define the likelihood function of the observations and in-
troduce appropriate prior distributions over the unknown pa-
rameters of the model in (1). The likelihood function can be

written as

p(y|w, β) = (
β

2π
)

M
2 |Λ|− 1

2 exp

[
−β

2
‖Λ 1

2 y −Λ
1
2 Xw‖2

]
.

(5)

First, a conjugate Gamma distribution is chosen as prior dis-
tribution for the noise precision β,

p(β|κ, θ) = Γ(β|κ, θ) =
θκ

Γ(κ)
βκ−1exp [−θβ] , (6)

with mean E[p(β|κ, θ)] = κ/θ and variance var[p(β|κ, θ)] =
κ/θ2. To introduce sparsity to our Bayesian model, Laplace
priors are used over the weight vector w. The Laplace distri-
bution is equivalent to a two-levels hierarchical prior, namely
a multivariate Gaussian prior with exponentially distributed
variances. More specifically, the Gaussian prior of w is

p(w|γ, β) = N (w|0, β−1Γ), (7)

where Γ = diag(γ), with γ = [γ1, γ2, . . . , γN ]
T , while a

Gamma prior is selected for the vector of variances γ, i.e.,

p(γ|α) =

N∏
i=1

Γ(γi|1,
αi
2

) =

N∏
i=1

[αi
2

exp
[
−αi

2
γi

]]
, (8)

where α = [α1, α2, . . . , αN ]
T . This two-levels ((7) and

(8)) hierarchical prior assignment leads to the multivariate
Laplace prior,

p(w|α) =

N∏
i=1

p(wi|αi) =

N∏
i=1

∫
p(wi|γi, β)p(γi|αi)dγi

=

N∏
i=1

√
βαi
2

exp
[
−
√
βαi |wi|

]
, (9)

whose potential in sparse signal recovery is explored in
[10]. To estimate the sparsity-promoting parameters αi, i =
1, 2, . . . , N from the data, a Gamma hyperprior is used,

p(αi|ρ, δ) = Γ(αi|ρ, δ) =
δρ

Γ(ρ)
αi
ρ−1exp [−δαi] , (10)

where ρ > 0 and δ > 0 are hyperparameters. Note that both
pairs of hyperparameters, κ, θ and ρ, δ, of the distributions for
β and α respectively are set to values close to zero, to account
for non-informative Jeffrey’s priors, p(η) ∝ 1

η .

4. BAYESIAN INFERENCE

The posterior distribution of w, β,γ,α is given by

p (w, β,γ,α|y) = p (y|w, β) p (w|γ, β) p (γ|α) p (α) p (β)∫
p (y,w, β,γ,α) dwdγdαdβ

.

(11)
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However, the computation of the exact posterior (from which
an estimate of w can be obtained) is intractable due to the in-
tegration at the denominator. To perform Bayesian inference
we choose to approximate (11) utilizing an iterative scheme
similar to BI-ICE that was presented in [8]. BI-ICE can be
viewed as a first-order approximation to variational Bayesian
inference methods, [10]. In analogy to a Gibbs sampling ap-
proach, the posterior conditional probabilities of the individ-
ual parameters are computed one by one. However, in the re-
sulting Bayesian inference iterative scheme, their mean values
are employed instead of random samples. Due to the preser-
vation of conjugacy in our Bayesian model, the conditional
posterior distributions can be expressed in closed forms. To
begin with w, the conditional posterior distribution of the fil-
ter coefficients is easily shown to be multivariate Gaussian,

p(w|y,γ,α, β) = N (w|µ,Σ), (12)

where

µ = βΣXTΛy, and (13)

Σ = β−1
(
XTΛX + Γ−1

)−1
. (14)

The posterior conditional for the precision parameter β is ex-
pressed as

p(β|y,w,γ,α) = Γ

(
β

∣∣∣∣M2 +
N

2
+ κ,

1

2

∥∥∥Λ 1
2 y −Λ

1
2 Xw

∥∥∥2 + θ +
1

2
wTΓ−1w

)
(15)

Also, straightforward computations yield that the conditional
pdf of γi, i = 1, 2, . . . , N given y, wi, αi, β is the following
generalized inverse Gaussian distribution

p(γi|y, wi,αi, β) =
(αi

2π

) 1
2

γ
− 1

2
i

exp

[
−βw

2
i

2γi
− αi

2
γi +

√
βαi |wi|

]
. (16)

Finally, the conditional posterior of αi, i = 1, 2, . . . , N given
y, wi, γi, β is expressed as

p(αi|y, wi, γi, β) = Γ
(
αi|1 + ρ,

γi
2

+ δ
)
. (17)

The expectations of the posterior conditional distributions
needed in the proposed scheme are also easy to derive. The
expectation of w, which will be finally used as the estimate of
w, is already provided in (13). Similarly, according to their
respective posterior distributions, the posterior expectations

of β, γi, αi are given by

E [p(β|y,w,γ,λ)] =
M
2
+ N

2
+ κ

1
2

∥∥∥Λ 1
2 y −Λ

1
2 Xw

∥∥∥2 + θ + 1
2
wTΓ−1w

(18)

E [p(γi|y, wi, αi, β)] =

√
βw2

i

αi
+

1

αi
(19)

E [p(αi|y, wi, γi, β)] =
1 + ρ

1
2
γi + δ

(20)

Following the workings of BI-ICE, a sparse estimate, ŵ = µ,
for w can be retrieved by iterating among the conditional
means of the parameters, as they are expressed in (13), (18),
(19), and (20). However, in the adaptive filtering scenario
under consideration, as new data become available one would
have to solve the system of equations in (13),(14) in each time
iteration, which is computationally prohibitive. In the follow-
ing it is shown that a computationally efficient algorithm can
be derived by updating each component of the adaptive filter
ŵ separately. This is achieved by suitably adjusting to our
probem the Gauss-Seidel (GS) iterative scheme for solving
(13), as explained below.

4.1. Gauss-Seidel variational adaptive filtering

It is easily recognized that the posterior mean estimate ŵ =
µ of w in (13) is the solution of a regularized LS problem
obtained from the following system of equations,

Rŵ = z, (21)

where

R = XTΛX + Γ−1, z = XTΛy (22)

are the corresponding regularized autocorrelation matrix and
crosscorrelation vector of the problem respectively. Let us
write R = L+U, where L is the lower triangular component
of R including its main diagonal and U is its strictly upper
triangular component. Then, according to the GS method,
(21) can be solved iteratively as follows

Lŵ(k+1) = z−Uŵ(k), (23)

where k is the iterations index. From (23) and due to the
lower triangular form of L, the elements of ŵ(k+1) can be
computed sequentially using forward substitution, [9]

ŵ
(k+1)
i =

1

rii

zi −∑
j<i

rijŵ
(k+1)
j −

∑
j>i

rijŵ
(k)
j

 . (24)

By defining ŵ
(k+1)
¬i = [ŵ

(k+1)
1 , . . . , ŵ

(k+1)
i−1 , ŵ

(k)
i+1, . . . , ŵ

(k)
N ]

and rT¬i as the i-th row of R excluding its i-th element, then

3



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

Initialize β,γ,α
for M = 1, 2, . . .

- update the cross-correlation vector z(M) from (28)
- update the autocorrelation matrix R(M) from (26)
for i = 1, 2, N

- get r¬i(M) and rii(M) from R(M) and zi(M)
from z(M)

- compute ŵi(M) from (25)
end for

- β(M) =
1
2+

N
2 +κ

|y(M)−ŵT (M)x(M)|2+θ+ŵT (M)Γ−1(M)ŵT (M)

- update γ(M) from (19)
- update α(M) from (20)

end for

Table 1. The proposed VBS-RLS algorithm

(24) is rewritten more compactly as1

ŵ
(k+1)
i =

1

rii

(
zi − rT¬iŵ

(k+1)
¬i

)
, (25)

for i = 1, 2, . . . , N . Since R is symmetric and positive defi-
nite (being the inverse covariance matrix of the posterior dis-
tribution in (12) scaled by β−1 > 0), the GS scheme in (25)
converges independent of the initial vector ŵ(0), [9].

In an adaptive setting it is reasonable to consider only one
cycle of the GS scheme per time iteration M of the adaptive
algorithm. Moreover, from (22) the regularized inverse auto-
correlation matrix R and the crosscorrelation vector z can be
efficiently time-updated as follows

R(M) = λR(M − 1) + x(M)xT (M)

−λΓ−1(M − 1) + Γ−1(M) (26)

z(M) = λz(M − 1) + x(M)y(M). (27)

The proposed variational Bayesian sparse RLS (VBS-RLS)
adaptive algorithm is summarized in Table 1. The VBS-RLS
is a time-recursive regularized LS scheme, where the regular-
ization matrix Γ−1 changes in time based on (19). It is ex-
actly this variational Bayesian mechanism of producing and
updating Γ−1 that imposes sparsity to our estimate, as also
verified by the simulation results presented in the next sec-
tion. Note from Table 1 that parameter β(M) is computed
based on the instantaneous squared error e2(M), instead of
the overall squared error, as in (15). We have noticed through
extensive experiments that expression (15) for β is not robust
especially at the initial convergence phase of the algorithm.
The overall complexity of VBS-RLS isO(N2) similar to that
of the classical RLS algorithm. This is very important for

1It is easily shown that this procedure is equivalent to a cyclic coordinate-
descent algorithm applied to the maximization of the cost function f(w) =

1
2

∥∥∥Λ
1
2 y − Λ

1
2 Xw

∥∥∥2 + 1
2
wT Γ−1w
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Fig. 1. Sparse estimates of VBS-RLS algorithm.
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Fig. 2. Convergence and steady-state NMSE.

a method of the Bayesian family, where high computational
loads are generally required. The most improtant feature of
the proposed algorithm though is that in contast to other re-
lated sparse adaptive schemes (e.g., [1],[2],[4]), it is fully au-
tomatic, alleviating the need for tuning or cross-validating any
parameters. This is a highly derirable characteristic in prac-
tice especially for on-line processing.

5. EXPERIMENTAL RESULTS

In this section we demonstrate the performance of the pro-
posed VBS-RLS algorithm. We consider a N = 40 taps
sparse channel, where only T = 8 of its components are
nonzero, generated from a standard normal distribution. The
positions of the nonzero channel taps are randomly selected.
The input sequence consists of randomly generated ±1 bi-
nary symbols, forming frames of length 1500. White Gaus-
sian noise is added to the output of the channel, resulting
in an SNR of 15dB. To assess the performance of the pro-
posed scheme a total of 100 frames and channel realizations
are used. The normalized mean squared error of the filter taps
is employed as performance measure, defined as

NMSE(M) = 10log10

{
(w − ŵ(M))T(w − ŵ(M))

wTw

}
.

(28)
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Fig. 4. Tracking of a time-varying channel.

Initially, to illustrate the sparsity of the estimates produced by
VBS-RLS, its solution for a single channel realization is plot-
ted in Fig. 1. The solution is obviously sparse and almost
identical to the true sparse channel coefficients. Next, the
convergence and NMSE performance of VBS-RLS is com-
pared to those of the classical RLS algorithm, and a widely
used sparse deviation of the RLS, the SpaRLS algorithm, [1].
In this venue, NMSE curves are displayed in Fig. 2, as it-
erations evolve in time. Although the proposed algorithm
has a slightly slower initial convergence rate (most probably
owing to the approximation for β(M)), it reaches faster its
steady-state and achieves the lowest steady-state NMSE. It
should be noted that the performance of the SpaRLS algo-
rithm strongly depends on a thresholding parameter, which
was fine-tuned through exhaustive experimentation. Steady-
state NMSE curves of the three algorithms versus SNR is
shown in Fig. 3. The curves have been obtained by aver-
aging over the last 500 steady-state NMSE values of the algo-
rithms. We observe that VBS-RLS outperforms the other two
algorithms in the whole SNR range. Interestingly enough, the
tracking capabilities of the VBS-RLS algorithm are displayed
in Fig. 4, where a time-varying sparse channel is utilized.
Specifically, a single nonzero tap of unit amplitude is added
to the channel at the 700th time instant. Fig. 4 shows that
the VBS-RLS easily adapts to the channel modification, and
reaches its steady-state faster than RLS and SpaRLS.

6. CONCLUSIONS

A fast variational Bayesian algorithm was proposed for per-
forming sparse adaptive filtering. The algorithm was derived
by properly combining a batch sparsity promoting variational
Bayes scheme with an efficient iterative GS method. The
performance of the proposed algorithm was demonstrated in
comparison to state-of-the-art sparse adaptive filtering algo-
rithms. Theoretical study of the overall algorithm’s conver-
gence, as well as a mechanism for zero filter taps pruning are
currently under investigation.
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