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ABSTRACT

Uncovering transcription factor (TF) mediated regulatory net-
works from microarray expression data and prior knowledge
is considered in this paper. Bayesian factor models that model
direct TF regulation are formulated. To address the enormous
computational complexity of the model in large networks, a
novel, efficient basis-expansion factor model (BEFaM) has
been proposed, where the loading (regulatory) matrix is mod-
eled as an expansion using basis functions of much lower
dimension. Great reduction is achieved with BEFaM as the
inference involves estimation of expansion coefficients with
much reduced dimensions. We also address the issue of in-
corporating the prior knowledge of TF regulation to constrain
the factor loading matrix. A Gibbs sampling solution has been
developed to estimate the unknowns. The proposed model
was validated by simulation and then applied to breast cancer
data to uncover the corresponding TF regulatory network and
theirs protein levels.

Index Terms— Bayesian Inference, Gene Expression,
Sparse Networks, Transcriptional Networks, Breast Cancer.

1. INTRODUCTION

The development of cells and theirs responses to different
stimuli is governed by complex genetic regulatory mecha-
nisms. Gene transcription, the earliest stage of gene regu-
lation, is mediated by a kind of proteins known as transcrip-
tion factors (TFs) that recognize and bind specific regions of
the genes. Uncovering the details of gene regulation and how
it defines cellular states and eventually phenotypes is a ma-
jor challenge facing computational systems biologists. With
the accumulation of high throughput genomics data such as
microarray expression profiles and biological knowledge, in-
cluding TF regulated gene sets and gen-protein interaction
databases, the development of robust computational models
able to fully utilize the data and the prior knowledge com-
prises one of the active topic in accurate uncovering gene reg-
ulations.

†Corresponding author: mscastillo@ugr.es

In this paper, we consider the problem of uncovering TF
mediated regulatory networks based on gene expression data
and prior knowledge of gene regulation. Currently, a large
number of models have been proposed including the ordi-
nary differential equations, (probabilistic) Boolean networks,
Bayesian networks and information theory based models [1].
Ideally, the TF protein level expression is needed for inferring
its context specific regulatory impact. However, due to the
low protein coverage and poor quantification accuracy of cur-
rent proteomics technologies, the measurements of TF pro-
tein expressions are hardly available. As a compromise, most
of the aforementioned models equate TF mRNA expression
to its protein activity. Since gene mRNA expression and its
protein expression are far from being correlated, due to post-
transcriptional regulation, such treatment is inappropriate and
thus the models based on such assumption cannot accurately
capture the TF regulatory impact.

In contrast, factor models based on approaches such as
network component analysis [2] and Bayesian sparse factor
regulatory model [3] treat TF activities as the unknown fac-
tors to be estimated and the mRNA expressions as a linear
combination of unknown TF activities. These factor models
directly address the mechanism of TF-mediated regulations
and therefore can result in regulatory networks closer to the
reality [4]. Moreover, the uncovered networks by factor mod-
els provide information of direct gene regulations by TFs. De-
spite these appealing features of factor models, they become
cumbersome to be applied to data involving a large number
of genes and TFs because the number of the unknown param-
eters for a large system increases exponentially and the in-
ference for such large systems is computationally extremely
challenging.

To overcome the aforementioned problems of the conven-
tional factor models, we propose in this paper a novel basis-
expansion factor model (BEFaM) where the loading matrix
efficiently describes the sparsity properties of the transcrip-
tional regulation and it is modeled as an expansion of basis
functions of much lower dimension. The inference for this
BEFaM involves the estimation of the expansion coefficients
with much reduced dimensions.
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We also address the issue of incorporating prior knowl-
edge of the TF regulation to constrain the factor loading ma-
trix. The proposed model was validated by the simulated
system and then applied to a real genomic data set of breast
cancer to uncover the context specific TF mediated regula-
tory network. The proposed basis expansion representation
of regulatory (loading) matrices significantly reduces model
complexity and enables application of factor models to large
networks.

2. SPARSE BASIS-EXPANSION FACTOR MODEL

Let Y ∈ RG×N be a gene expression data set, the log-
transformed mRNA gene expression fold-changes versus
control, with G genes and N samples. Likewise, consider
X ∈ RF×N the N respective activity profiles of F TFs. We
assume that gene expression levels are due a linear combina-
tion of the TF activities as

yn = Axn + en,∀n = 1, . . . , N (1)

where yn = [y1n, . . . , yGn]
> and xn = [x1n, . . . , xFn]

> are
respectively the gene expression and the unknown TF activ-
ities of the n-th sample, A ∈ RG×F is an unknown loading
coefficients matrix and en is experimental noise, distributed
as independent white noise by a zero mean Gaussian (Nor-
mal) with variance σ2

n as

p (en) = N
(
en|0G×1, σ2

n1
G
)
. (2)

The loading matrix coefficients af = [a1f , . . . , aGf ]
> de-

note the strength with which the f -th TF regulates the expres-
sion of each gene. Particularly, these coefficients represent
with positive/negative values the up/down regulation or with
zero when the TF does not regulate the gene. It is well un-
derstood that each TF only regulates a small subset of the
genes in a genome and therefore a sparsity representation of
the loading matrix should be favored. To this end, Meng et
al. have proposed in [3] a sparse Bernoulli Gaussian (BN)
priors for the coefficients in A, which impose the probabili-
ties πgf ,∀g, f for the coefficients to be non-zero. Therefore,
for each coefficient, the sparse modeling is represented by the
non-zero prior probabilities, a zero mean and variance σ2

f as

p (agf ) = BN
(
agf | 0, σ2

f , πgf
)

(3)

= (1− πgf ) δ (agf ) + πgfN
(
agf | 0, σ2

f

)
The prior probabilities πf = [π1f , . . . , πGf ]

> represent
our prior knowledge of TF f regulating gene g, which can
be acquired from, for instance, TransFac database [5]. In this
work, to reduce computational complexity, we propose the
following Functional prior Induced Gaussian (FIG) distribu-
tion to mimic the BN sparse prior as

p (af ) ≈ N
(
af |0, σ2

fDπf

)
(4)

(a) πgf = 0.8 (b) πgf = 0.2

Fig. 1. Bernoulli Gaussian (BN) distribution and its Func-
tional Induced Gaussian (FIG) approximation with zero
mean, variance σ2

f = 0.1 and different prior mass probabili-
ties πgf .

where Dπf
is a diagonal matrix with elements from vector

πf . In Figure 1 we represent two BN priors and theirs corre-
sponding FIG approximations for the univariate case. As can
be seen, the FIG can closely approximate the BN prior. The
FIG has the advantage of being more flexible when modeling
high dimensional variables and much more computationally
efficient compared with the BN prior. Moreover, it allows the
formulation of our proposed BEFaM to be discussed next.

The factor model in (1) includes a large number of un-
knowns; the TF activities and the (loading) regulatory matrix.
The loading matrix A is the key factor for computational con-
sideration since its dimension increases with G × F and, for
large genome, the size can be in millions. Thus, even with the
sparse prior constraint, the number of the unknowns is still
extremely large. Inference at such scale is computationally
costly expensive and not robust. To address this problem, we
propose to model the sparse regulatory matrices with basis
expansion as

A = BC (5)

where B ∈ RG×K is a matrix of K known bases and C ∈
RK×F is the coefficient matrix. Note that now we infer C
instead of A and since G >> K, there will be roughly G/K
fold reduction in computational complexity with this propose
basis expansion. Consequently, the factor model (1) can be
expressed as

yn = BCxn + en. (6)

The efficiency of coefficients C for modeling the expres-
sion data by the proposed expansion model depends on the
proposed expansion basis B. According to wavelet theory,
any signal can be decomposed into components spanned by
the scaling and shifting wavelet basis functions at different
resolutions. We consider in this paper the Haar wavelet ma-
trix. Specifically, we construct the matrix B by choosing the
K = G

2 eigenvectors that describe the first-level detail coeffi-
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cients. Therefore, B>B = 1K and its psuedoinverse is equal
to its transpose B+ = B>.

Given the basis B and the FIG prior in (4), it is easy to
show that the prior distribution of the coefficients C can be
expressed as

p (cf ) = N
(
cf |0, σ2

fB
>Dπf

B
)

(7)

where σ2
f is further assumed to follow the a priori Inverse

Gamma distribution

p
(
σ2
f

)
= IG

(
σ2
f

∣∣αf , βf) . (8)

where αf and βf are respectively the shape and scale parame-
ters, set up to have a non-informative prior [6] with αn = 0.1
and βn = 0.1. On the other hand, the activities xn and the
noise variance σ2

n in (2) are modeled a priori by the conjugate
Gaussian-Inverse-Gamma distribution as

p
(
xn, σ

2
n

)
= N

(
xn| 0,

σ2
n

κn
1F
)
IG
(
σ2
n

∣∣αn, βn) (9)

where κn is a scale of the variance. To avoid scale unam-
biguity, this is set to be the inverse of the expected value of
σ2
n with κn = βn

αn+1 . On the other hand, the shape and the
scale parameters control the variance of the noise σ2

n and they
are set to have a non-informative prior with αn = 0.1 and
βn = 0.1.

Given the gene expression data Y and the prior TF regu-
latory probabilities πgf∀g, f , the goal of uncovering TF me-
diated network is to infer the basis coefficients C, from which
the regulatory matrix A can be calculated, and the TF activ-
ities X. We propose a Gibbs sampling solution in the next
section.

3. GIBBS SAMPLING SOLUTION

A factor model considering the original loading matrix A
with a prior Bernoulli Gaussian distribution demands the
computation of all the G variables. In contrast, the BEFaM
that we propose in (6) reduces the computational complexity
to K = G

2 variables. Despite this reduction of the number of
unknowns, the proposed model is still high-dimensional and
the derivation of the posterior distributions is analytically in-
tractable for a large number of genes. Therefore, we propose
a Gibbs sampling solution. Note that σ2

n and σ2
f ∀f, n are

nuisance parameters to be estimated as well.
Gibbs sampling devises a Markov chain to produce ran-

dom samples of the unknown from the intractable posterior
distributions. The key of this method is to derive the con-
ditional posterior distributions. Since all the priors are care-
fully chosen to be the conjugate priors, the close form of the
marginal posterior distribution can be derived. Due to lim-
ited space, we omit the detailed derivation here. The Gibbs
sampling draws samples from these marginal distributions it-
eratively and the tth iteration can be summarized as follows:

Fig. 2. Real values of the elements in C and X versus its
squared error (SE) in the estimations.

• sampling ĉ(t+1)
kf from p

(
ckf |Y,

{
ĉ
(t)
k`

}F
` 6=f

,X(t)

)
• sampling x̂(t+1)

fn from p

(
xfn|Y,

{
x̂
(t)
`n

}F
6̀=f
,C(t+1)

)
• sampling σ̂2(t+1)

f from p
(
σ2
f

∣∣∣Y, Ĉ(t+1)
, X̂

(t+1)
)

• sampling σ̂2(t+1)
n from p

(
σ2
n

∣∣Y, Ĉ(t+1)
, X̂

(t+1)
)

Note that if the prior probabilities πf in (7) are such that

b>kDπf
bk = 0 (10)

where bk is the k-th eigenvector from the basis, then we have

p (ckf = 0) = 1 (11)

and no sampling is needed for ckf .
To diagnose the convergence of Gibbs sampler, we adopt

the scheme described in [6] by sampling parallel chains and
discarding those corresponding to the burn-in period. Then,
the rest of the samples of each chain are use to estimate the
unknowns.

4. RESULTS

We have tested the proposed Gibbs sampling algorithm pre-
sented above using a simulated data, with G = 50 genes,
N = 50 samples and F = 8 TFs. We generate a synthetic
transcriptional network by the simulation of πgf ∈ [0.8, 1]
for the 40% of its elements. The remaining 60% have a zero
prior probability, a setting that mimics the real scenario as it
is shown next. Subsequently, we generate the gene expres-
sion data set by simulations of the priors (7), (9) and (8) us-
ing the non-informative settings. As described above, the ba-
sis is built by choosing the first half eigenvectors from the
Haar wavelet decomposition, with a dimension reduction of
K = G

2 = 25. The the Gibbs sampling considers P = 10
parallel chains, T = 10000 samples and a burning period of
5000 samples.

Figure 2 shows the results with the simulated data set as
described above. This plot represent the normalized (non-
zero) coefficients ckf and the TF activities xfn versus theirs
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Fig. 3. Heatmap of the priors πgf estimated by TransFact and
MATCH, with proteins as rows and genes as columns.

squared errors (SE). The root mean squared error (RMSE) of
the complete set of coefficients is RMSEC = 4.75 · 10−4,
while for the TF activities is RMSEX = 5.32 · 10−4.

Besides the simulated data set, we have inferred the TF ac-
tivities for a real data set with N = 20 breast cancer expres-
sion profiles whose subtypes are known: Basal and HER2.
We consider a data set with G = 55 genes, the ones consid-
ered in the PAM50 test [7] that dissects the breast cancer in
four main subtypes. Moreover, we consider F = 17 TFs by
the appointment of experts and that are supposed to be related
to breast cancer. Figure 3 represents the prior probabilities of
the non-zero elements πgf∀g, f , with a 52% of sparsity level,
predicted with the TransFac database and the Match tool [5]
to perform TF binding site prediction. Figure 4 shows the
hierarchical clustering resulting from the estimated TF activ-
ities. It is shown that the interfered protein profiles perfectly
captures the biochemical differences between the two cancer
subtypes. In the estimated transcriptional space, two proteins
are highly correlated with the Basal and the HER2 breast can-
cer subtypes. The E2F1 and CEBP1, two proteins with a key
role in the cell cycle and its apoptosis [8].

5. CONCLUSIONS

The BEFaM proposed in this paper constitutes a new way to
model sparse networks to infer TF activities from gene ex-
pression data and gene-protein interaction prior knowledge.
This new model introduce a FIG distribution and proposes
a wavelet based expansion to reduce the complexity of the
Gibbs sampling inference method. Our new method is vali-
dated by simulation and with real breast cancer data. Its per-
formance shows satisfactory results with both simulated and
real data, revealing its high potential in the disease molecular
classification. As a future work, we propose to continue ex-
ploiting the the Bayesian formalism to combine data and to
improve the solutions provided by the BEFaM.
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