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ABSTRACT 

The implementation of adaptive Hammerstein filters 
involves updating the coefficients of two cascaded blocks, 
namely, a memoryless nonlinearity and a linear filter. Such 
an update process presents important numerical problems 
mainly due to the non-uniqueness of the coefficient values 
that lead to optimum performance. These problems can be 
circumvented by keeping constant (not adapting) one of the 
filter coefficients, which however may significantly slow 
down the convergence of the adaptive algorithm. In this 
context, this paper presents a novel approach to implement 
adaptive Hammerstein filters in which a coefficient 
normalization strategy is used to overcome the 
aforementioned numerical problems. Thus, enhanced 
convergence speed is obtained with a small increase in the 
computational burden. Simulation results are presented to 
corroborate the effectiveness of the proposed strategy. 

Index Terms—Adaptive filters, Hammerstein filters, 
NLMS algorithm, nonlinear filters. 
  

1. INTRODUCTION 

Signal processing systems involving adaptive filtering 
algorithms have been extensively used over the last decades. 
This is in part due to the processing power increase of the 
modern digital signal processors (DSPs), which has allowed 
practical implementations of sophisticated adaptive filtering 
structures. The nonlinear adaptive filters [1] are very good 
examples of such structures. 

Nonlinear filters and their adaptive implementations are 
usually classified according to their underlying nonlinear 
functions due to the unavailability of a unifying nonlinear 
filtering theory. In this context, one important class is that of 
the Hammerstein filters [2], which are composed of a 
memoryless nonlinearity cascaded with a linear filter. As 
described in [2], such structures are appropriate for modeling 
many real-world systems and, as a consequence, the 
Hammerstein filters have been used in several practical 
applications. In particular, their adaptive implementations are 
used in various acoustic echo cancellation systems [3]-[5]. 

In adaptive applications, the update of the coefficients of 
the two blocks (memoryless nonlinearity and FIR filter) that 
compose a Hammerstein filter may present significant 
numerical problems. This is due to the fact that optimum 
performance can be obtained with one of such blocks having 
very small coefficient values whereas the coefficients of the 
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other have large values. Since small coefficient values may 
result in loss of numerical precision and large values in 
arithmetic overflow, the adaptive algorithm may fail in its 
purpose of searching for optimum coefficient values. As 
described in [2], such numerical issues can be circumvented 
by keeping constant (not adapting) the value of one of the 
filter coefficients. This strategy, in spite of resulting in a 
unique solution that contributes to the stability of the 
adaptive algorithm [6], often produces a significant 
degradation on the convergence speed. To overcome this 
problem, this paper presents a novel approach for 
implementing adaptive Hammerstein filters based on the use 
of a coefficient normalization strategy to avoid the 
aforementioned numerical issues. Such a strategy can be 
used with different adaptive algorithms despite the fact that 
the algorithm of choice here is the normalized least-mean-
square (NLMS) because of its very good tradeoff between 
computational complexity and performance. 

This paper is organized as follows. In Section 2, the 
implementation of adaptive Hammerstein filters using the 
NLMS algorithm is discussed. Section 3 starts with a 
discussion regarding the implementation obtained by 
keeping constant one of the coefficients and then describes 
the proposed implementation strategy, its numerical 
characteristics and the required computational burden. 
Results of numerical simulations are presented in Section 4 
aiming to assess the performance of Hammerstein 
implementations obtained by using the proposed strategy. 
Concluding remarks are presented in Section 5. 

2. NLMS HAMMERSTEIN FILTERS 

Implementations of Hammerstein filters are obtained by 
using different types of memoryless nonlinearities and of 
linear filters [2]-[5]. Here, we consider the implementation 
from [3], which is composed of a polynomial memoryless 
nonlinearity p  followed by a linear FIR filter w  (see 
Fig. 1). It is important to note that, despite considering such 
implementation, the strategy developed here may be easily 
extended to other Hammerstein implementations. 

 
Fig. 1. Block diagram of a typical Hammerstein filter. 

In Fig. 1, ( )x n  represents the input signal, ( ),y n  the 
output signal, and ˆ( ),x n  the input signal for .w  The input-
output relationship for p  is 

FIR filterPolynomial
nonlinearity

w( )x n ( )y nˆ( )x np
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 2
1 2ˆ( ) ( ) ( ) ( )M

Mx n p x n p x n p x n= + + +  (1) 

with M  representing the nonlinearity order and ,mp  the 
mth order coefficient. By defining an input vector as 

 2 3 T
p ( ) [ ( ) ( ) ( ) ( )]Mn x n x n x n x n=x  (2) 

and a corresponding coefficient vector as 
 T

1 2 3[ ]Mp p p p=p  (3) 

expression (1) can be rewritten as 
 T

pˆ( ) ( ).x n n= p x  (4) 

Moreover, defining the coefficient vector of the FIR filter as 

 T
0 1 2 1[ ]Nw w w w −=w  (5) 

its input-output relationship can be written as 

 T ˆ( ) ( )y n n= w x  (6) 

with Tˆ ˆ ˆ ˆ( ) [ ( ) ( 1) ( 1)]n x n x n x n N= − − +x  representing 
the input vector and ,N  the memory size. Aiming to obtain 
an input-output relationship for the whole structure of the 
Hammerstein filter, one can define an input matrix as 

 p p p( ) [ ( ) ( 1) ( 1)]n n n n N= − − +X x x x  (7) 

and, considering (6) and that Tˆ( ) ( ) ,n n=x X p  the following 
input-output relationship is obtained: 

 T T( ) ( ) .y n n= w X p  (8) 

2.1. Update Equations 
The expression to update the coefficients of the memoryless 
nonlinearity p  using the NLMS algorithm is obtained by 
minimizing the squared Euclidean norm of 

 ( 1) ( 1) ( )n n nδ + = + −p p p  (9) 
subject to 

 T ( 1) ( ) ( ) ( )n n n d n+ =p X w  (10) 

with ( )np  and ( )nw  representing the adaptive versions of 
(3) and (5), respectively, ( 1),n +p  the a posteriori version 
of ( )np  [7], and ( ),d n  the desired signal. Then, solving the 
minimization problem described by (9) and (10) (using an 
approach analogous to the one presented in [8]), the 
following update expression is obtained: 

 p
2

p

( 1) ( ) ( ) ( ) ( )
( ) ( )

n n e n n n
n n

α
+ = +

+ ψ
p p X w

X w
 (11) 

where pα  is the control parameter and p,ψ  a small constant 
that prevents divisions by values close to zero. Also in (11),  

 ( ) ( ) ( )e n d n y n= −  (12) 

is the error signal. Similarly to (9)-(11), the following 
update expression can be obtained for the coefficients of the 
FIR filter: 

Tw
2T

w

( 1) ( ) ( ) ( ) ( )
( ) ( )

n n e n n n
n n

α
+ = +

+ ψ
w w X p

X p
 (13) 

with wα  and wψ  functionally similar to pα  and pψ . 

2.2. Strategies for Practical Implementation 
In practical applications, the implementation of an NLMS 
adaptive Hammerstein filter is carried out considering not 
only (11) and (13), but also certain strategies for improving 
the performance, obtaining better numerical properties or 
even reducing the computational complexity. One among 
these strategies is related to the calculus of the matrix 
product T ( ) ( )n nX p  in (13). Note that, since ( )np  is not 
available before the nth iteration, the whole product 

T ( ) ( )n nX p  can only be evaluated in such an iteration. 
However, if one assumes that ( )np  varies slowly, only the 
first element of T ( ) ( )n nX p  needs to be evaluated at the nth 
iteration and, by reusing the elements obtained in previous 
iterations, an approximated version of T ( ) ( )n nX p  can be 
obtained with smaller computational cost. Another 
implementation strategy adopted in adaptive Hammerstein 
filters is the use of the input orthogonalization procedure 
described in [2], which aims to improve the convergence 
speed. This strategy is not considered in the present paper 
since it is complementary to the strategy proposed here, 
which means that the input orthogonalization can be used 
concurrently with the proposed strategy in practical 
applications. A third adaptive Hammerstein implementation 
strategy is to keep constant (not to adapt) one of the filter 
coefficients aiming to ensure the uniqueness of the optimum 
coefficient values [2]. This strategy, despite being crucial to 
the numerical stability of the adaptive algorithm, may have a 
significant negative impact on the convergence speed. 

3. EFFICIENT IMPLEMENTATION OF NLMS 
HAMMERSTEIN FILTERS 

In this section, a novel effective strategy for implementing 
adaptive Hammerstein filters is discussed. The aim here is to 
obtain satisfactory numerical properties without slowing 
down the convergence by keeping constant one of the filter 
coefficients. In this context, the non-uniqueness of the 
optimum coefficient values and the impact of keeping one 
coefficient constant are initially discussed. Subsequently, 
the proposed strategy is described along with the analysis of 
its numerical properties and computational complexity. 
3.1. Non-Uniqueness of the Optimum Coefficient Values 
The simultaneous adaptation of both memoryless 
nonlinearity and FIR filter, composing an adaptive 
Hammerstein filter, often presents significant numerical 
problems. This is due to the non-uniqueness of the optimum 
solution, which means that there are infinite combinations of 
coefficient values that lead to the minimum (optimum) value 
of mean-square error (MSE). Such characteristic can be 
verified by using the property vec[ ] =ADB

T( )vec( )⊗B A D  [9] (with ,A  ,D  and B  representing 
generic matrixes) to rewrite (8) as 

 T T T T T( ) ( ) ( )vec[ ( )]y n n n= = ⊗w X p p w X  (14) 
with ⊗  representing the Kronecker product and vec[ ],⋅  the 
operator that converts a matrix to a vector stacking the 
columns of such a matrix [9]. By defining an equivalent 
Hammerstein coefficient vector as 

 ( )= ⊗h p w  (15) 
expression (14) can be rewritten as 
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 T T T( ) ( ) ( ) ( )y n n n= ⊗ =p w x h x  (16) 

with T( ) vec[ ( )]n n=x X  denoting the input vector. From 
(16) and also considering the properties of the Kronecker 
product [9], one can note that a given equivalent coefficient 
vector can be obtained from either p  and w  or cp  and 

/ ,cw  with c  representing an arbitrary scalar, i.e.,  
 ( ) [( ) ( / )] ( / )( ).c c c c= ⊗ = ⊗ = ⊗h p w p w p w  (17) 

Since c  can assume infinite possible values, one observes, 
from (16) and (17), that the same output signal, and 
consequently the same minimum MSE, can be obtained 
from infinite combinations of coefficient values. In this way, 
situations with small values in one coefficient vector ( ,p  for 
instance) and large values in the other ( )w  tend to occur 
frequently, leading to loss of precision (due to small values) 
and/or overflow (because of large values). 
3.2. Implementation with a Constant Coefficient 
A strategy that is commonly used to circumvent the 
numerical problems of standard adaptive Hammerstein 
filters is to keep constant the value of one of the filter 
coefficients [2]. As seen in [2] and [6], the chosen 
coefficient is usually the first from the linear filter ,w  
whose value is kept equal to 1. However, aiming to obtain a 
lower computational burden, to keep constant the first 
coefficient from the nonlinearity p  is a more attractive 
strategy. In doing so, the evaluation of the first element of 
the vector resulting from ( ) ( )n nX w  in (11) is avoided, 
which directly results in a reduction of N  multiplications 
and 1N −  additions per iteration. A similar computational 
saving is not observed when the first coefficient of w  is 
kept constant, since the product T ( ) ( )n nX p  in (13) is 
usually obtained by using data from previous iterations (see 
Section 2.2). 

The expression to update ,p  with its first coefficient 
equal to 1 using the NLMS algorithm, is obtained by 
including the following constraint on the minimization 
problem described by (9) and (10): 

 T ( 1) 1n + =c p  (18) 
where c  represents a constraint vector (in this case, the first 
element of c  is equal to 1 and the remaining ones equal to 
0). Thus, solving the resulting minimization problem 
(analogously to the solution presented in [10]), one obtains 

 p
2

p

( )
( 1) ( ) ( ) ( ) .

( ) ( )

e n
n n n n

n n

α
+ = + +

+ ψ
p Pp PX w c

PX w
 (19) 

where T
M= −P I cc  and MI  is an M M×  identity matrix. 

In spite of considerably improving the numerical 
properties of the adaptive algorithm, the adaptive 
Hammerstein implementation obtained by keeping constant 
one of the coefficients tends to present smaller convergence 
speed than the conventional implementation. The use of the 
constraint given in (18) contributes significantly to such 
performance degradation, since it restrains the set of 
possible solutions in a way that a deviation is produced with 
respect to the optimum convergence direction estimated by 
the standard adaptive algorithm at each iteration. Thus, the 
algorithm tends to slow down due to the accumulation of the 

effect of such a deviation during hundreds or thousands of 
iterations. Another problem that may arise from keeping 
constant one of the coefficients is associated with the 
relationship between the value of such coefficient and the 
values of the others. For instance, consider that the first 
coefficient of w  is kept equal to 1 in a case where such 
coefficient is that of smaller magnitude after convergence. 
In this case, considering also the initialization of the other 
coefficients of w  with zeros (which is a common practice), 
a considerable number of iterations will be required to lead 
these coefficients to their steady-state values, which are 
larger or much larger than 1. Thus, one notes that the choice 
of the coefficient to be kept constant may have a significant 
impact on the convergence speed of the adaptive algorithm. 
3.3. Proposed Implementation Strategy 
Aiming to obtain an adaptive Hammerstein filter with 
satisfactory numerical properties (without slowing down the 
adaptive algorithm), a novel implementation strategy is 
presented in this section. Such a strategy is based on 
keeping the Euclidean norm of one of the coefficient vectors 
(p  or )w  equal to 1 throughout the adaptive process, 
without modifying the equivalent coefficient vector ( 1)n +h  
obtained at the end of each iteration. We choose to keep the 
norm of ( )np  equal to 1 since this vector usually presents a 
smaller number of coefficients than ( )nw  in practical 
applications, which leads to a smaller computational burden. 
The proposed strategy is then implemented multiplying, at 
the end of each iteration, ( 1)n +p  by 1/ || ( 1) ||k n= +p  and 

( 1)n +w  by 1 / k  [with || ( 1) ||n +p  representing the 
Euclidean norm of ( 1)].n +p  Such a procedure results in a 
vector ( 1)n +p  with unit norm, maintaining the equivalent 
coefficient vector ( 1)n +h  unchanged, which can be 
verified from the following expression:  

  

( 1) [ ( 1)] [(1/ ) ( 1)]
( / ) [ ( 1) ( 1)] [ ( 1) ( 1)].

n k n k n
k k n n n n
+ = ⋅ + ⊗ ⋅ +

= ⋅ + ⊗ + = + ⊗ +
h p w

p w p w  (20) 

3.3.1. Numerical Characteristics 
To assess the characteristics of the solution obtained by 
using the proposed normalization strategy, we first consider 
that, if the solution is unique, the equality 

 an a bn b= ⊗ = ⊗h p w p w  (21) 

must only hold for a b=w w  and an bn ,=p p  where aw  and 
bw  are instances of (5) with arbitrary values, whereas anp  

and bnp  represent instances of (3) with arbitrary values and 
unit norm, i.e., 

 an bn|| || || || 1.= =p p  (22) 
Then, from (21), we can write 

 
2 T T T T

an a an a bn b bn b
T T
an a bn b

|| || ( )( ) ( )( )
( )( )

= ⊗ ⊗ = ⊗ ⊗
= ⊗ ⊗

h p w p w p w p w
p w p w

(23) 

which, considering the mixed-product rule of the Kronecker 
product [9], results in  

 T T T T T T
an an a a bn bn b b an bn a b.⊗ = ⊗ = ⊗p p w w p p w w p p w w  (24) 

Taking into account that the Kronecker product between two 
scalars is equal to a multiplication, squaring (24), and taking 
the square root of the resulting expression, one obtains 
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2 2 2 2 T T
an a bn b an bn a b|| || || || || || || || | | | | .⋅ = ⋅ = ⋅p w p w p p w w  (25) 

From (22) and (25), one has 
 2 2 T T

a b an bn a b|| || || || | | | | .= = ⋅w w p p w w  (26) 

By considering now the Cauchy-Schwarz inequality [11], 
and also (22) and (26), we can write 

 T
an bn an bn| | || || || || 1≤ ⋅ =p p p p  (27) 

and 
 T 2

a b a b a| | || || || || || || .≤ ⋅ =w w w w w  (28) 

Note that, if T
an bn| | 1≠p p  in (27), T

an bn| | 1<p p  and, in this 
case, (26) only holds if 

 T 2
a b a| | || || .>w w w  (29) 

However, one observes that (29) contradicts (28) and, thus, 
one concludes that (27) necessarily results in 

 T
an bn| | 1.=p p  (30) 

Furthermore, considering (26) and (30), one observes that 
(28) results in  

 T 2
a b a| | || || .=w w w  (31) 

From (30), one notices that equality holds in (27) (a 
Cauchy-Schwarz inequality) and, consequently, the 
involved vectors an(p  and bn )p  are linearly dependent [11]. 
Thus, we can write 

 an bn= βp p  (32) 
and therefore 

 an bn|| || | | || ||= β ⋅p p  (33) 

with β  representing an arbitrary scalar. By considering now 
(22), one notices that (33) only holds for 1,β = ±  implying 
that 

 an bn .= ±p p  (34) 

Similarly, one can conclude that 
 a b.= ±w w  (35) 

From (21), (34), and (35), one observes that the 
proposed strategy, despite not leading to a unique solution 
for p  and ,w  provides two possible solutions differing 
only by the signs of the coefficients and not by their 
magnitude. Thus, the risk of having very small values of 
coefficients in one of the coefficient vectors and very large 
values in the other is considerably reduced, implying 
satisfactory numerical properties for the algorithms based on 
the proposed strategy. 
3.3.2. Computational Complexity 
The use of the proposed strategy results in an increase of 
2M N+  multiplications, 1M −  additions, 1 division, and 1 
square-root operation with respect to the conventional 
Hammerstein filter implementation. Such an increase is 
relatively small as can be seen in Fig. 2. In this figure, 
curves of the number of operations per sample as a function 
of the nonlinearity order are shown for the following 
implementations of NLMS Hammerstein filters with 
memory size 100N =  (considering the cost of 1 division or 
1 square root equal to that of 10 multiplications or 10 
additions): (I) conventional implementation; (II) with the 

first coefficient of the nonlinearity kept equal to 1; (III) with 
the strategy of normalizing the coefficient vectors (proposed 
strategy); and (IV) with the normalization of the coefficient 
vectors performed only at each 10 iterations [reduced-
complexity version of (III)]. Implementation (IV) is 
obtained by adapting the filter coefficients for 9 iterations 
and performing the normalization on the tenth iteration. 
Thus, the curve corresponding to (IV) in Fig. 2 represents 
the average number of operations per sample. Besides the 
curves for the four implementations of Hammerstein filters, 
Fig. 2 also shows a curve of the number of operations per 
sample [indicated by (V)] for the power filter using a non-
adaptive version of the input-orthogonalization procedure 
described in [12]. Such a filter is considered here for 
comparison purposes since the Hammerstein filter can be 
seen as a particular case of the power filter [12]. 

 
Fig. 2. Computational complexity required by different 
implementations of NLMS Hammerstein filters and of the 
NLMS power filter. 

4. SIMULATION RESULTS 
In this section, numerical simulation results are presented 
aiming to compare the performance of two adaptive 
implementations of the Hammerstein filter using the 
proposed strategy [(III) and (IV)] with those of the other 
implementations described in Section 3.3.2 [Hammerstein 
implementations indicated by (I) and (II) as well as the 
power filter indicated by (V)]. Such a comparison is 
performed in terms of MSE curves obtained from Monte 
Carlo simulations (average of 100 independent runs) 
involving the modeling of Hammerstein plants. The linear 
part of the plants considered here presents the impulse 
response shown in Fig. 3 (a scaled version of the 2m  
response from the ITU G.168 recommendation [13]). The 
adaptive filters used to model the plant present a memory 
size of 100. The input signal used is white Gaussian with 
unit variance and the measurement noise, added to the 
output of the plant, has variance 2 6

z 10 .−σ =  

 
Fig. 3. Impulse response of the linear part of the plant. 
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4.1. Example 1 
The nonlinearity of the plant considered in this example is 
described by ˆ( ) 0.5 ( )x n x n= − 2 30.15 ( ) 0.05 ( ).x n x n+  The 
parameters of the NLMS algorithm used for (I)-(IV) are: 

g hα = α = 0.25,  h 1,ψ =  and g 10.ψ =  For (V), the 
parameters of the NLMS algorithm are 0.5α =  and 

310 .−ψ =  The obtained MSE curves are shown in Fig. 4. 
One observes the very good performance of the 
implementations based on the proposed strategy [(III) and 
(IV)]. These implementations provide practically the same 
convergence speed than (I) (conventional implementation 
presenting numerical problems). Moreover, such 
convergence speed is considerably superior than that 
obtained by using (II) (implementation with one coefficient 
kept equal to 1) and (V) (power filter). In addition, it is 
important to highlight that the difference of performance 
between (III) and its reduced-complexity version (IV) is 
very small for this example. 

4.2. Example 2 
The plant used in this example has a nonlinearity described 
by 2ˆ( ) 0.1 ( ) 0.2 ( ).x n x n x n= +  The parameters of the NLMS 
algorithm used by (I)-(IV) are: h 0.3,α =  g 0.1,α =  h 1,ψ =  
and g 10.ψ =  For (V), the parameters of the NLMS 
algorithm are the same as in Example 1. The obtained MSE 
curves are shown in Fig. 5. We again notice the very good 
performance of the implementations based on the proposed 
strategy [(III) and (IV)] especially in comparison with the 
poor performance of (II) (implementation with one 
coefficient kept equal to 1). These results attest the 
efficiency of the implementations based on the proposed 
strategy and, in particular, the attractiveness of (IV) due to 
its reduced complexity in comparison with (III). 

 
Fig. 4. MSE curves for Example 1. 

 

 
Fig. 5. MSE curves for Example 2. 

5. CONCLUDING REMARKS 

In this paper, a novel strategy to implement adaptive 
Hammerstein filters was discussed. Such a strategy is based 
on using a procedure to normalize the coefficient values 
aiming to avoid numerical problems that arise from adapting 
the cascaded structure of a Hammerstein filter. As a result, 
new adaptive Hammerstein implementations were obtained, 
leading to a superior performance as compared with the 
implementation carried out by keeping constant one of the 
coefficients. Numerical simulation results were shown 
corroborating the effectiveness of the proposed strategy. 
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