
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

CHASING THE NEUROME: SEGMENTATION AND COMPARISON OF NEURONS 

 

Suvadip Mukherjee
1
, Barry Condron

2
 and Scott T. Acton

1 

 
1
Charles L. Brown Department of Electrical and Computer Engineering 

2
Department of Biology 

University of Virginia, Charlottesville, USA. 
 

 

ABSTRACT 
 

The neuronal content of an organism, the individual 

morphology of each neuron and the variability of these 

components constitute the atlas of the neurome. The 

description of such an atlas will be critical in determining 

the complex neural system of a given organism, eventually 

providing clues to how animals think and function. As the 

organisms under investigation scale from the worm to the 

human, the number of neurons scale from tens to millions. 

Image analysis is a key ingredient in tackling a neurome for 

complex organisms. Specifically, two major problems stand 

between the state of the art and successful automation. First, 

neurons must be segmented from microscopy, yielding a 

morphological description of each individual neuron. 

Second, these neurons must be matched to prototypes and 

classified by function. This report describes current progress 

on these two fronts, revealing encouraging progress as 

demonstrated on the fruit fly Drosophila. 

 

Index Terms— confocal microscopy, image analysis, 

segmentation, neuron tracing. 

 

1. INTRODUCTION 
 

The neurome is to the neurons of an organism as the genome 

project is to genetic content.  Along with collaborators in 

biology, we are developing tools that aid in automating the 

building of such a neuroma, concentrating of that of the fruit 

fly Drosophila. With around 20,000 neurons in the Ventral 

Nervous Cord (VNC) of an adult fruit fly Drosophila and 

more than 10
11

 neurons in the adult human brain, the task of 

developing a complete neural atlas for such organisms is 

both relevant and daunting. While the neurome of the 

relatively simpler C. elegans is well understood, mapping 

the neural anatomy of more complicated organisms, such as 

the neuroma of the fruit fly, mouse and human, is still an 

unsolved challenge. 

 Equipped with the state of the art technology to 

facilitate 3-D imaging of the neurons, researchers are 

focusing attention on segmenting/tracing neurons from 3-D 

images. Essentially, two unsolved problems pose challenge 

in developing the neural anatomy of a species. The first 

challenge is to be able to trace/segment the neurons from a 

3-D stack of microscopy images. Confocal microscopy is 

widely used in the biological community to image the 

neurons. The low SNR and discontinuous structure of the 

images provide hurdles, especially in achieving complete 

automation of the tracing process. The second challenge, 

receiving relatively less attention in the research 

community, is the development of algorithms that categorize 

pre-segmented neurons into different functional classes 

based on morphological structure. 

 In this paper, we give an overview of the recent 

developments in the field and in our laboratory with an 

emphasis on the technical challenges and unresolved issues 

pertaining to both the tracing and matching problems.  

 

2. NEURON SEGMENTAION 

 

Confocal microscopy is a widely used technique to obtain 3-

D images of neurons. Despite its benefits, the images 

obtained using confocal microscopy suffer from significant 

noise and poor contrast. Figure 1 shows sample images 

obtained using confocal microscopy. Both the images are 

plagued by background clutter, low resolution and poor 

contrast between the foreground and background.  
 

  

Figure 1: 3-D confocal microscopy images. 

An efficient automated segmentation algorithm should be 

able to effectively trace the neuron from the noisy image, 

with minimal user interaction, to generate the neuronal tree. 

The popular tracing methods may be broadly categorized 

into two classes. The first set of algorithms depends on a set 

of pre-selected seed-points to initialize the tracing process. 

The seed points may be selected interactively via user-input, 

or may be created automatically based on finding points of 
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interest in the image. Seed point based methods are 

essentially local processing techniques, since they analyze 

the regions local to the selected seed-points. While manual 

seed-selection ensures better accuracy, the inconvenience in 

terms of time and human effort calls for automated 

techniques. The robustness of these seed-based techniques is 

in general affected by the signal intensity and presence of 

noise. Discontinuity in the neurite structure also creates 

bottlenecks, resulting in incomplete or erroneous 

segmentation.  

However, seed based approaches are 

computationally efficient, thus encouraging researchers to 

develop techniques to overcome the above mentioned 

difficulties. The widely used neuron tracing tool Vaa3d [1] 

requires manually chosen seed points for tracing purpose. 

Although this method requires human supervision, Vaa3d 

serves as an efficient tool to generate ground truth for 

neuron segmentation. Recent addition in Vaa3d includes an 

all path pruning approach [2], which is capable of automatic 

seed point selection based on an initial over segmentation 

technique, followed by a specialized pruning process to 

remove the over-estimated branches. The connectivity 

between the broken fragments is established by using a 

graph deformation model, which uses a shortest path 

approach to connect the broken components [3]. The 

efficiency of these methods is limited by the choice of some 

heuristically chosen parameters and the amount of clutter 

present in the image. Also, the traced path is not guaranteed 

to lie along the neuron centerline, requiring further manual 

edits to rectify the error.  

Wang et.al. proposed an active contour based 

methodology for neuron tracing [4]. In this technique the 3-

D image is preprocessed to enhance the neuronal structures 

followed by automated selection of seed points. An open 

ended snake is initialized to trace each neuronal branch by 

minimizing an optimization function that forces the active 

contour to evolve along the neuron centerline. The authors 

use GVF based technique [5] to develop a medialness 

measure which may be sensitive to noise.  However, this 

active contour based method is an efficient tool for neuron 

segmentation, especially in handling datasets with less 

complicated branching patterns. Typically, the seed-based 

approaches are computationally efficient, but require special 

processing techniques to handle branching and end point 

detection. 

 The second category of neuron segmentation 

algorithms is a global approach as opposed to the local seed 

based tracing methods. These techniques generally consist 

of four steps: image preprocessing, an initial segmentation, 

graph based connectivity analysis of the possibly disjoint 

components and an optional pruning step. Tree2Tree [6] and 

Tree2Tree-2 [7] are two global neuron segmentation 

techniques. A brief overview of the Tree2Tree-2 is shown in 

Figure 2.  

 

Figure 2: Workflow of Tree2tree-2 

The neuron structure is assumed to be tubular, which leads 

to a model based neuron enhancement technique to delineate 

the tubular structure from the background. The computation 

is performed in the scale space paradigm to capture the 

branches of varying thickness. Inspired by Frangi’s method 

[8], we aim to create a vesselness measure to reflect the 

presence or absence of a neuron. At a voxel	�, we have a 3D 

Hessian (matrix of second partial derivatives) with 

eigenvalues	|��| � |��| � |��|. The tubular portions are 

characterized by |��| 	 0, |��| ≪ |��| and	�� 	 ��. The 

vesselness response at scale 
 is obtained as 
 

����� � � |����� � �����|��|�����||����� � �����|� 	if		�����, ����� � 0	
0																													otherwise  

 

(1) 

The hessian enhancement is followed by an adaptive initial 

segmentation step based on surface evolution to classify the 

voxels into foreground and background. This variational 

segmentation scheme poses the problem in an optimization 

framework that balances the contribution of the signal 

intensity and the smoothness of the threshold surface. The 

extracted medial axis of the possibly disjoint binary 

components represents the sub-parts of the neuronal 

structure, whose connectivity is established by analyzing the 

geometric orientation of the components. A minimum 

spanning tree of the created global graph represents the 

neuron structure as a graph theoretic tree. 

 

  
(a) (b) 

  
(c) (d) 

Figure 3: (a) A 3-D confocal stack of a neuron. (b) The vesselness 

image post hessian enhancement. (c) Segmented neuron and the 

extracted centerline (d). 
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The path search method uses a shortest path algorithm to 

ensure the presence of path between two disjoint 

components. Once the connectivity information is obtained, 

the neuron sub-structures are connected by this shortest 

path, resulting in accurate path connectivity. An automated 

pruning process is also devised to eliminate any undesired 

branches, which may appear due to segmentation error. The 

final neuronal morphology is embedded in ‘SWC’ file 

format which contains the geometric and connectivity 

information of the traced neuron. The SWC file allows 

visualization of the traced neuron using popular rendering 

software like Vaa3d. Sample segmentation results are shown 

in Figure 4. The discussed technique is well equipped to 

handle complex branching pattern and is completely 

automated. The algorithm performs well in presence of 

noise and clutter as shown in Figure 4(c). 

 

   

   

 
   (a)        (b)    (c) 

Figure 4: (a) Original confocal stack. (b) Ground truth 

segmentation using Vaa3d. (c) Segmentation using Tree2Tree. 

Apart from the above discussed methods, a number of semi-

automated software such as Neuron Studio [9], Simple 

Neurite Tracer [10]  are freely available. A broad class of 

neuron tracing algorithms is discussed in [11]. 

 

3. NEURON MATCHING 

 

Building the neurome requires analysis of thousands of 

neurons from different species. The first step in achieving 

this goal is segmentation or tracing. Proper segmentation 

provides insight into the morphological structure and 

connectivity of a neuron. The second challenge is that of 

neuron classification or matching. Given a pre-segmented 

neuron, an efficient matching algorithm should be able to 

categorize the neuron into its morphological class. This 

serves a two-fold purpose. First, this creates a validation 

mechanism of the tracing algorithm. Second and more 

importantly, the matching score between two neurons can be 

used to retrieve a morphologically similar neuron from a 

vast database. Structural classification is important since it        

supports Cajal’s hypothesis that structure of a neuron is 

highly correlated with its functionality. 

 The problem of neuron matching has received 

relatively less attention over the years. While significant 

efforts have been made to automate the tracing process, the 

task of categorizing the neurons still remains an open 

problem. The DIADEM metric [12] was developed to 

compute the reconstruction error of a segmented neuron. It 

uses a branch point proximity based method to calculate the 

reconstruction error. However, this method is more suitable 

for comparing multiple reconstructions of the same neuron, 

since the error metric does not necessarily reflect a 

substantial difference in structure. The method of Mayerich 

et al. [13] computes the reconstruction error by penalizing 

the absence of a proper branch or presence of an unwanted 

loop. 

 Recently, two approaches were proposed to 

compute a similarity score between two fully reconstructed 

neurons. Both the approaches treat a pre-segmented neuron 

as a graph theoretic tree, with the cell body/soma as its 

designated root. The first approach Path2Path [14] was a 

novel idea that modeled a neuron as a set of continuous 

connected paths. Each point in a neuronal path is 

characterized by a) its concurrence, or the number of times 

the point is shared between the remaining neuronal paths 

and b) its hierarchy that represents the number of levels a 

point is separated from the root.  

 

 

Figure 5: A simulated neuron as a collection of paths. 

 
Figure 5 illustrates the concept of concurrence and 

hierarchy. �� 		represents the individual paths. Concurrence 

and hierarchy of a path		�� 		is represented as		 !"	and #!"		respectively. The degree of mismatch between the paths �� and $% for neurons N and M is given as 

 

&!",'( � ) | !"�*� �  '(�*�||���*� � $%�*�|
+#!"�*�#'(�*�

�
, -* 

(2) 

 

Path2Path is an efficient formulation to compare two 

neurons. However, to tackle more complicated geometry 

and branching pattern, another method was introduced to 

compare neurons based on their local geometric orientation. 

The second method highlighted here, the 

geometric-statistical method [15], computes the shape 
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histogram of the neuronal points at each level of hierarchy.  

This formulation reduces the neuron matching problem to 

computing the distance between two distributions.  Also, a 

penalty term was introduced to account for the mismatch in 

hierarchies of the neurons. Both Path2Path and the 

geometric-statistical approach were used to compare 

between neurons of different functionality. While the 

performance was encouraging for relatively simpler 

structures, complicated branching patterns create a 

bottleneck in the classification. 

For example, in Figure 6, the granule cells (a)-(b) are 

morphologically similar. However, it is difficult to conclude 

that the pyramidal cells (c)-(d) are structurally similar, 

although they serve the same function in the brain. The 

performance of the present matching algorithms is 

dependent on the evident structural similarity/dissimilarity 

between two neurons.  

 

4. FUTURE WORK AND CONCLUSION 

 

From biological perspective, development of the neurome is 

necessary to analyze the different symptoms related to 

certain neurological diseases or to measure the amount of 

degeneration in the neurons with aging. This requires 

complete automation for the neuron tracing and matching 

techniques. As mentioned in this paper, both segmentation 

and matching of neurons is still an open problem. In fact, 

automated information extraction is the final bottleneck 

towards achieving the neurome. Despite ongoing research, a 

large population of researchers in the biological community 

still depends on manual tools to segment neurons. In fact, 

most of the successful algorithms in the Diadem challenge 

(http://diademchallenge.org) were semi-automated. This 

leaves massive room for research as far as designing 

automatic tracing algorithm is concerned.  

Neuron classification problem is still open. Only 

initial work has been reported regarding matching and 

retrieval of neurons. Since the discussed matching methods 

consider only the path shape and branch orientations of the 

neurons, it would be interesting to analyze the shape of the 

neuron contour (2-D) or the neuron surface. The neuron 

matching can also be performed by devising a sub-graph 

matching algorithm. However, since subgraph isomorphism 

is computationally hard, it would be necessary to consider 

some acceptable approximated algorithms. 
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(a) (b) (c) (d) 

Figure 6: (a) and (b) are granule cells of the Rat. (c) and (d) shows 

pyramidal cells of the same species. 
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