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ABSTRACT
The problem of reconstructing a signal from compres-

sively sensed measurements is solved in this work from a
Bayesian perspective. The proposed reconstruction solution
differs from previous Bayesian methods in that it numeri-
cally evaluates the posterior of the sparse solution. This al-
lows the method to utilize any kind of information on the sig-
nal without the need to evaluate the posterior in closed form.
Specifically, the method uses multi-stage sampling together
with a greedy subroutine to efficiently draw information di-
rectly from the likelihood and any prior distribution on the
signal, including a sparsity prior. The approach is shown to
accurately represent the Bayesian belief on the sparse solution
based on noisy compressively sensed signals.

Index Terms— Bayesian compressive sensing, sparse re-
construction, Monte Carlo methods

1. INTRODUCTION

Compressive sensing enables the acquisition of possibly high-
dimensional signals at sub-Nyquist rate while preserving sig-
nal structure [1–4]. One type of compressive acquisition pro-
cess is agnostic to the signal being sensed. This non-adaptive
process has the potential of simplifying receiver design, while
at the same time preserving information in any type of ac-
quired signal. Adaptive compressive acquisition methods
have also been proposed which either adapt during compres-
sive acquisition [5, 6] or configure the adaptive mechanism
before signal acquisition based on prior information [7, 8].

Following compressive acquisition, a reconstruction pro-
cess can be used to identify the original sparse signal. One
type of reconstruction algorithm identifies a single recon-
structed signal which best represents the compressed mea-
surements based on a minimum Euclidian distance metric
and the assumption of sparsity [9, 10]. Another type of re-
construction method is based on the Bayesian framework,
where the posterior density function of the sparse solution is
estimated [6]. A point estimate solution can also be obtained

This work was co-funded by the European Regional Development Fund
and the Republic of Cyprus through the Research Promotion Foundation
(Project TEXNOΛOΓIA/MHXAN/0311(BIE)/03).

by a Bayesian method via maximum a posteriori (MAP) or
minimum mean squared error (MMSE) estimation.

Existing Bayesian reconstruction methods combine the
measurement likelihood with a sparsity promoting prior in
order to estimate the posterior. Since the sparsity prior and
likelihood are not conjugate, the resulting posterior cannot be
evaluated in closed form. A hierarchical prior is then used to
solve the Bayesian problem [6, 11, 12]. Moreover, Bayesian
reconstruction methods are able to use adaptivity during the
acquisition process and choose to obtain more compressive
measurements to improve reconstruction [6]. Adaptivity has
also been used in compressive sensing and processing (CSP)
with no reconstruction in [7, 8]. However, current Bayesian
reconstruction methods are not designed to use prior infor-
mation on the composition of the signal, which is available in
sequential estimation scenarios [7, 8] and configure the sens-
ing mechanism prior to signal acquisition.

The Monte Carlo Bayesian Compressive Sensing method
(MC-BCS) proposed in this work differs from existing
Bayesian methods in that it estimates the posterior numer-
ically using a sampling and weighting process. This process
allows the method to directly utilize the likelihood and any
kind of prior information without invoking a hierarchical
form to evaluate the posterior, as done in existing Bayesian
methods [6]. The ability of the method to effectively use
prior information on the composition of the signal is shown
to improve reconstruction quality. Moreover, the sparsity
prior [6] is shown to be a special case of the prior on signal
composition and to be seamlessly integrated in the method.
The proposed method can, however, become computationally
expensive when reconstructing sparse signals with a large
numbers of elements. In order to overcome the dimensional-
ity problem, a multi-stage sampling process [15,16] involving
a greedy-type subroutine [9, 10] is used to efficiently select
individual signal elements which accurately represent the
original signal.

In Section 2 the complex signal model is described. In
Section 3 a connection is drawn between the solution pro-
vided by Bayesian and point estimate reconstruction methods
and the proposed method. In Section 4 the proposed MC-BCS
algorithm is described. The quality of the reconstruction so-
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lution is assessed in Section 5 with conclusions in Section 6.

2. SIGNAL MODEL

Nyquist rate signal:
A deterministic M -dimensional complex signal com-

posed of elementary signals or atoms sl, l ∈ Tȷ is given by

s̀ȷ =
∑
l∈Tȷ

α(l)sl = Sxȷ. (1)

There are J such sparse signals with unique sets of atoms
Tȷ, ȷ = 1, . . . , J of cardinality Tȷ = |Tȷ| << M ∀ȷ. Fur-
thermore, nearly orthogonal atoms indexed l ∈ L in any
sparse signal are assumed to be members of a finite set L =∪
{Tȷ}Jȷ=1 with cardinality L = |L| ≤ M . Then, a size

M×L matrix S is then defined containing L atoms 1√
ξs

sl, l =

1, . . . , L, in its columns. Therefore, s̀ȷ = Sxȷ with xȷ =∑
l∈Tȷ

α(l)δl being a sparse vector and δl is a unit impulse at
l. A prior probability on the appearance of s̀ȷ at the receiver,
available in sequential estimation scenarios [7, 8], is given as

p(s̀ȷ) = p(Tȷ), ȷ = 1, . . . , J. (2)

The associated atom probability distribution is then

p(l) =
∑
ȷ:l∈Tȷ

p(Tȷ) (3)

which sums probabilities p(Tȷ) over ȷ such that atom l ∈ Tȷ.
p(l) in (3) then represents the probability that atom l has non-
negligible magnitude. The probability p(l) may, for example,
correspond to the probability that a radar target reflected sig-
nal containing a delay-Doppler corresponding to index l is
expected to arrive at the receiver at the next time step. The
information is based on prior probability on target state built
from past measurements and kinematic information. A spe-
cial case of prior information on the composition of the signal
described in (2) and (3) is the probability on the number of
atoms in the signal given by

p(T ) ∝
∑

ȷ:|Tȷ|=T

p(Tȷ) (4)

where all probabilities of equal cardinality sets Tȷ are com-
bined to build the required probability distribution. If the
probability p(T ) is heavily skewed towards small numbers of
atoms T then p(T ) represents a sparsity prior [6].

Stochastic versions of (1) are given by length M vectors

rȷ =
∑
l∈Tȷ

γ(l)sl, and rυȷ =
∑
l∈Tȷ

γ(l)sl + υ. (5)

Random variables γ(l), l ∈ Tȷ represent atom strength while
υ is a length M zero mean random noise vector. rȷ repre-
sents the noiseless vector of the signal which is the one to be
reconstructed while rυȷ also contains additive noise.

The Compressive Acquisition Matrix:
A configurable acquisition matrix is given by [13]

Φ = Q S∗ (6)

composed of the M × L sparsity dictionary matrix S and
the C × L matrix Q which is a partial Fourier compressive
acquisition matrix [14] with the restricted isometry property
(RIP) [1,2]. The matrix construction in (6) is shown in [13] to
increase SNR, when no reconstruction is used, versus using a
non-adaptive matrix. In Section 4 this matrix is also shown to
improve reconstruction quality. In case a fixed matrix is used
then Φ = Q where Q is a C ×M partial Fourier matrix.

Compressively Sensed Signal:
A projection of the signal in (1) on a C ×M acquisition

matrix Φ yields compressed deterministic sequences g̀ȷ, ȷ =
1, . . . , J of dimensionality C << M given, using (1), by

g̀ȷ = Φs̀ȷ =
∑
l∈Tȷ

Φsl =
∑
l∈Tȷ

α(l)gl, gl = Φsl. (7)

Similarly, a projection of the signal in (5) yields the compres-
sively acquired signal at the compressive receiver

hȷ = Φrυȷ . (8)

3. THE GOAL OF RECONSTRUCTION AND
CONNECTION TO PRIOR WORK

A Bayesian solution estimates the posterior distribution of
the reconstructed signal given compressively sensed measure-
ments and any prior information available on the signal to be
received [7, 8]. The goal of the numerical based Bayesian re-
construction presented in this work is to identify a set of N
reconstructed signals s̀n along with probabilities ωn as

s̀n =
∑
l∈Tn

α(l)sl, ωn for n = 1, . . . , N (9)

with s̀n as in (1). Moreover, ωn reflects the belief that the
signal accurately represents the original noiseless signal rȷ in
(5). Given the compressed measurements in (8), then

ωn = p(s̀n|hȷ) ∝ p(hȷ |̀sn)p(s̀n) for n = 1, . . . , N (10)

represents a discrete version of the posterior, proportional to
the likelihood p(hȷ |̀sn) and prior p(s̀n) in (2) supported on
n = 1, . . . , N . The likelihood is based on the Euclidian dis-
tance [6] or equivalently the cross-correlation between tem-
plates g̀ȷ in (7) and the compressively received waveform hȷ

in (8) defined later in (19). The compressed measurement
likelihood has been shown in [13] to become more highly
peaked when either the number of compressed measurements
increases or when prior information is included in the acqui-
sition process, with the potential to improve the overall per-
formance of Bayesian reconstruction.

The probability distribution p(s̀n) in (2) on the other hand,
represents any prior information on the composition of s̀n,
including that of sparsity. The proposed method differs from
current Bayesian methods which restrict p(s̀n) to be a sparsity
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prior [6]. Moreover, p(s̀n) is used both when compressively
acquiring the measurements as explained in [8,13] and during
reconstruction as explained in Section 4.1.

A point estimate can be derived from the posterior in (9)
using the MAP as

ŝMAP = s̀n for n = argmax
n

ωn (11)

or the minimum mean squared error (MMSE) as

ŝMMSE =
N∑

n=1

ωns̀n. (12)

Point estimate methods [9, 10] identify a sparse solution
xopt composed of atoms with indices l ∈ Topt and magnitudes
αopt(l) as in (1) similarly to the MAP solution in (11) as

min
xopt

{||hȷ − ΦSxopt||22 + ϱ||xopt||1} (13)

i.e. having a minimum Euclidian distance or equivalently
maximum correlation as in with the compressed measure-
ments and also being sparse. Sparsity on the solution is
enforced using the l1-norm of xopt in (1). Moreover, the
parameter ϱ balances between the Euclidean norm for mini-
mizing noise energy and the l1-norm for promoting sparsity.

4. THE RECONSTRUCTION PROCESS

In order to obtain the Bayesian solution in (9), a simple algo-
rithm would assign a weight ωȷ to each signal s̀ȷ, ȷ = 1, . . . , J
in (1). However, this would be computationally expensive due
to the large number of unique combinations of atoms J com-
posing an equal number of solutions. Instead, a multi-stage
proposal is used to first sample individual atoms most likely
to be found in the signal and then merge the resulting good
quality atoms into N << J signals which accurately rep-
resent the noiseless signal in (5). This sampling method is
based on multi-stage and likelihood sampling particle filter-
ing methods [15–17] combined with a greedy method [9, 10]
to emphasize weaker atoms in the signal.

4.1. Multi-stage atom sampling

For constructing each solution n, compressed templates gl̃ =

Φsl̃, l̃ = 1, . . . , L are first formed as in (7). Then, for each
atom index t = 1, . . . , Tmax single atom correlations with
the residue are found as

a(l) =
g∗
l hres

t

|gl|2
, l = 1, . . . , L. (14)

Then the value of a(l) both indicates the proposed atom am-
plitude and the single element likelihood ratio

Λ(a(l)) =
p(a(l)|gl)

p(a(l)|0)
, l = 1, . . . , L. (15)

The type of the likelihood probability distribution p(a(l)|gl)
depends on the distribution of the atom strength which is
scaled by C

M (see [13]) and the additive noise in (5). Also,

Table 1. The MC-BCS Algorithm

• Obtain measurements hȷ = Φrυȷ (8)

• For each solution n = 1, . . . , N

– Let hres
1 = hȷ (8)

– For t = 1, . . . , Tmax

∗ Calculate a(l) =
g∗l hres

t

|gl|2 , l = 1, . . . , L (14)
∗ Calculate likelihood Λ(a(l)), l = 1, . . . , L (15)
∗ Sample index lt ∼ {Λ(α(l̃))p(l̃)}L

l̃=1
(16)

∗ Updateresidue hres
t = hres

t−1− α̂n(t−1)glt−1 (17)
∗ If ∆res < Θres break loop and set Tn = t

– Form solutions s̀n =
∑Tn

t=1 α̂n(t)slt (18)

– Calculate weights ωn = Λ(βn|g̀n)p(̀sn)∏Tn
t=1 bt

(21)

p(a(l)|0) denotes the noise-only likelihood. Next, an atom is
sampled as

lt ∼ {Λ(a(l̃))p(l̃)}L
l̃=1

(16)

where the prior distribution on individual atoms p(l) in (3)
was considered. The sampled atom is associated with mag-
nitude α̂n(t) = a(lt) found in (14) and a sampling bias of
bt = Λ(α̂n(t))p(lt). For sampling the next atom, atom index
t of solution n is incremented by 1 and the residue is updated
similarly to [10]

hres
t = hres

t−1 − α̂n(t− 1)glt (17)

where the initial compressed signal residue is defined as
hres
t = hȷ, with hȷ as in (8). Therefore, using this greedy

subroutine the sampled atom is removed from the measure-
ments to emphasize the rest of the atoms for the next atom
sampling step. The process of identifying atom amplitudes in
(14) and sampling from the resulting single atom distribution
as in (16) is repeated until the residue remains nearly un-
changed as ∆res = |||hres

t ||22 − ||hres
t−1||22| < Θres with Θres

an assigned threshold found to work well in the numerical
analysis of 5. Different stopping criteria [9], including ones
related to the probability of false alarm or lower bounds in
tracking error, could be applied in future work. It is noted that
the use of a peaked prior in (16) leads to a more efficient sam-
pling of atoms. Therefore, the overall number of proposed
solutions N required decreases thus reducing computational
expense.

4.2. Reconstructed signals and weighting

Following the individual proposal of atoms, multi-element re-
constructed signals are constructed as

s̀n =

Tn∑
t=1

α̂n(t)slt (18)

for each n. Compressed templates g̀n = Φs̀n are then formed
similarly to (7). The correlation of proposed compressed tem-
plates with the compressed measurement in (8) is

βn = g̀∗
nhȷ (19)

3
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Fig. 1. MC-BCS MSE performance for 50 atoms
for SNRs 18, 20, 22dB with dash, dash-dotted and
solid lines respectively.

and the likelihood ratio is identified as

Λ(βn|g̀n) =
p(βn|g̀n)

p(βn|0)
, n = 1, . . . , N. (20)

The likelihood p(βn|g̀n) using correlation is equivalent to
the Euclidean distance based likelihood, via the parallelogram
identity, which is in line with the estimation goal in (13). The
weight of each of the the reconstructed signals n are given as

ωn =
Λ(βn|g̀n)p(s̀n)∏Tn

t=1 bt
, (21)

which take into account the bias bt in proposing atoms in (16)
[16] and the prior on the signal structure given by (2), and
correspond to (10). As a special case the prior represents a
sparsity prior in (4) where the above formulation penalizes
solutions which do not conform to sparsity constraints. A
single point estimate can be found as (11) or (12). In order to
assess the reconstruction performance the mean squared error
(MSE) in reconstruction is given by

E =
N∑

n=1

ωn
||̀sn − rȷ||22
||̀sn||2||rȷ||2

. (22)

where the noiseless signal in (5) was used. The algorithm is
described in Table 1.

5. NUMERICAL ASSESSMENT OF THE QUALITY
OF RECONSTRUCTION

Simulation results were obtained over different numbers
of compressed measurements C from 500 to 1000. The
Nyquist dimensionality complex signals were chosen as
time-frequency shifted Björck constant amplitude zero-
autocorrelation (CAZAC) sequences [8, 18, 19] of prime
length 1999 and with total length of M = 2100. The SNR
took values of 18, 20 and 22dB with atom energy and random
strength variance set to 1. The SNR was defined as the ratio of
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Fig. 2. MC-BCS MSE performance for 10 atoms
for SNRs 18, 20, 22dB with dash, dash-dotted and
solid lines respectively.
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Fig. 3. MC-BCS compared to FL MSE perfor-
mance for SNRs 18, 20, 22dB with dash, dash-
dotted and solid lines respectively.

the individual atom energy to the noise variance. The likeli-
hood was Rayleigh distributed due to the zero mean complex
Gaussian signal strength and noise terms. The atom prior
distribution in (3) was chosen to be uniform over L = 1000
of the atoms. In the case no prior information is used then the
resulting atom dictionary S is ignored when constructing the
acquisition matrix in (6) and when executing the reconstruc-
tion algorithm. The number of atoms in each solution was
allowed to increase to Tmax = 100 until Θres = 0.01. The
number of solutions used was set to N = 50 and 100 Monte
Carlo trials were taken.

In Figure 1 and Figure 2 the MSE in (22) was plotted
versus the number of compressive measurements for 50 and
10 atoms in the received signal respectively. In all figures
the performance improves as the SNR increases from 18 to
22dB where the different SNRs are shown with different line

4
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style. It is, moreover, observed that performance improves
as the number of compressive measurements increases due to
the more concentrated single atom likelihood which results,
as mentioned in Section 3 and shown in [13]. The overall
performance improves when prior information is used in the
adaptive matrix as shown in [13] and mentioned in Section 4
and also due to the sampling step in (16) which includes the
prior. The results show that with the proposed method the use
of prior makes the algorithm more robust to an increase in
the number of true atoms over using a fixed agnostic acqui-
sition matrix. Moreover, in Figure 3 the Fast Laplace (FL),
in [12] and [11] for complex signals, with settings providing
best performance, was compared with the MC-BCS for 10
atoms. Both algorithms used the adaptive matrix. The results
show that the MCBCS, due to its use of the adaptive prior dur-
ing atom proposal and estimation and not only in the adaptive
matrix as in FL, is improved in performance over FL.

6. CONCLUSIONS

In this paper the MC-BCS method was proposed which nu-
merically evaluates the posterior distribution of the sparse re-
construction solution. The method is able to utilize any kind
of information available in the received signal to estimate the
posterior without the need of a closed form solution as in
existing Bayesian methods [6, 12]. Therefore, the proposed
method is able to accommodate realistic measurements as-
sociated with non-Gaussian probability distributions. Goals
for future research are the identification of large numbers of
atoms in the compressively sensed signal, which currently
proves to be computationally expensive, and the application
of the method in realistic sequential estimation applications
accurately described by non-Gaussian, non-linear models.
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