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Özlem Tuğfe Demir, T. Engin Tuncer

Electrical and Electronics Engineering Department, METU, Ankara, Turkey
{tugfe.demir , etuncer}@metu.edu.tr

ABSTRACT

Transmit beamformer design usually results suboptimum
beamformers in multicast scenario. In this paper, discrete
phase only beamformer design is considered. The design
problem is cast in such a form that the solution is always
feasible and optimum beamformer can be found using the
branch and cut algorithm. Beamformer phase terms and their
interrelations are expressed with a set of cosine vectors which
lead to linear set of constraint equations that can be solved
with mixed integer linear programming. It is shown that
the proposed approach is very effective and the number of
quantization bits can be increased to obtain results close to
optimum continuous phase beamformers.

Index Terms— Transmit beamformer, phase only beam-
former, mixed integer linear programming, branch and cut

1. INTRODUCTION

Transmit beamformer design is an important problem which
has found widespread applications in different fields inclu-
ding communications, radar, etc. In this paper, ”multicast”
beamforming scenario is considered where the transmitter
transmits the same information to several users spread ge-
ographically [1]. Therefore simultaneous beams should be
directed to users.

Phase is the most critical parameter of a beamformer and
it determines the general shape of the beam. Magnitude is also
important, especially to reduce the sidelobe level. In this pa-
per, phase only (PO) beamformer design is considered. This
is done due to both practical and theoretical concerns. In prac-
tice, radar systems use discrete phase transmit beamformers.
From a theoretical perspective, dealing with only phase terms
decreases the number of variables and in our case allows us
to obtain a convenient optimization formulation which leads
to optimum solutions.

While PO beamformer design is not a new concept, pre-
vious approaches are usually simplistic and deal with only
a single beam or a single target [2]. For a single target,
optimum beamformer is trivial and it is the array steering
vector [3]. When there are more than one target, the prob-
lem becomes complex and usually some kind of optimization
approach should be followed. Straightforward application

of convex optimization with semidefinite relaxation does not
give satisfactory results. In fact, relaxation done by dropping
the rank condition [1] usually generates higher rank solutions.

In this paper, discrete PO transmit beamformer design is
considered and maxmin formulation for the optimum solu-
tion is developed. This formulation is based on some cosine
vectors which are used to obtain the phase contributions as
well as the relations between different phase terms. The ad-
vantage of this new formulation is that, we obtain mixed in-
teger linear programming structure which is completely fea-
sible and guaranteed to give the optimum solution. To our
knowledge, this method is the only one which guarantees the
optimum solution in a multicast transmit beamformer design.
As the number of bits for phase quantization increases, the
discrete PO beamformer approaches to the continuous PO
beamformer. However, it should be noted that there is no
guarantee that the optimum continuous phase PO beamformer
is obtained by simply increasing the number of bits of op-
timum discrete phase PO beamformer. Furthermore, quan-
tizing the phase angles of an optimum continuous phase PO
beamformer may not result the discrete optimum solution. In
this paper, it is shown that even with a moderate number of
bits, the quality of the discrete PO beamformer is as good as
the continuous PO beamformer. Several experiments are done
and the effectiveness of the proposed method is shown.

2. PHASE ONLY BEAMFORMER DESIGN

Phase only beamformers are used in practice in order to trans-
mit power to targets efficiently. While continuous phase trans-
mit beamformer design can be done effectively [4], there is no
guarantee for the optimality of the design. In this paper, it is
shown that optimum discrete phase PO beamformers can be
obtained if the problem is cast in a suitable form for mixed
integer linear programming. In this respect, the beamformer
phase terms and the relations between these phases are set
using cosine vectors. This formulation eliminates the main
barrier for optimum solutions, namely the ”rank” condition
[1], [5].

2.1. Continuous Phase Only Beamformer

Consider a base station equipped with M transmitting anten-
nas to transmit the common signal to N receivers, each having
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a single antenna. Assume that the antennas and path losses are
identical. Transmitted signal is narrowband and propagation
is nondispersive. The transmitted signal can be written as,

x(t) = s(t)w (1)

where s(t) is the source signal and w is the Mx1 complex
beamformer weight vector. The received signal at kth re-
ceiver is given as,

yk(t) = hHk x(t) + nk(t) k = 1, . . . N (2)

where hk is the Mx1 complex channel vector for the kth re-
ceiver and nk is additive noise with variance σ2

k. Signal-to-
noise ratio (SNR) for the kth receiver is,

SNRk =
σ2
s |wHhk|2

σ2
k

(3)

where σ2
s is the source signal variance. σ2

s = 1 is selected for
simplicity in the following part.

The transmit beamforming ”maxmin” problem is to
choose beamforming weight vector in order to maximize the
minimum power that is transmitted to any target. Considering
Pan as the antenna power, the PO beamformer problem can
be written as follows [4],

max
w

t

s.t. wHRkw ≥ tγkσ2
k, k = 1, ..., N

(wwH)k,k = Pan

(4)

where γk is the power proportion for the kth target, Rk =
E{hkhHk }. Let us define W = wwH . The problem for PO
beamformer can be written as,

max
W

t

s.t. T r{RkW} ≥ tγkσ2
k, k = 1, ..., N

Wk,k = Pan

W � 0

rank(W) = 1

(5)

The problem can be solved by convex optimization with
semidefinite relaxation [1], [5]. Let us denote the solu-
tion found by semidefinite relaxation as V and the principal
eigenvector of V as v = P(V). If the solution matrix V has
rank one then vvH = V and v is the optimum beamforming
weight vector. If V is not a rank one matrix, magnitude of
the beamformer vector elements are taken as µi =

√
Pan.

Also phase of the principal eigenvector, arg vi, is fixed as
initial values whereas ψi is the optimization parameter, i.e.,
ŵi = µie

j(arg vi+ ψi).The nonlinear optimization problem
for PO beamformer can be written as,

max
ψi

t

s.t. wHRkw ≥ tγkσ2
k, k = 1, ..., N

|wi| =
√
Pan i = 1, ...,M (6)

Above nonlinear optimization problem can be solved by using
nonlinear solvers. In our case, ”fmincon” in MATLAB with
interior point algorithm and gradient search is used. This ap-
proach finds the local optimum as it is expected in any nonli-
near optimization problem in general. Fortunately, the prob-
lem has several local optima, which are usually close to the
global maximum quality. This phenomenon is known as the
”glass break” in [1].

2.2. Discrete Phase Only Beamformer Design

When the phase angles of the beamformer are selected from a
discrete set, it is possible to find an optimum solution for the
transmit beamformer. The discrete phase PO transmit beam-
former problem can be written as,

max
ψi

t

s.t. wHRkw ≥ tγkσ2
k, k = 1, ..., N (7)

|wi| =
√
Pan i = 1, ...,M (8)

ψi ∈ {0, θ, 2θ, ...(2n − 1)θ} (9)

θ =
2π

2n
(10)

where n is the number of bits to represent the discrete phase
angles. Since Rk is a Hermitian symmetric matrix and |wi|
is constant, the inequality in (7) can be expressed in a cosine
form, i.e.,

max
ψi

t

s.t.

M−1∑
i=1

M∑
j=i+1

2Pancos(argR
ij
k + ψj − ψi) +MPan ≥ tγkσ2

k

k = 1, ..., N

ψi ∈ {0, θ, 2θ, ...(2n − 1)θ} (11)

where Rij
k is the ith row and jth column element of the Rk

matrix. Since the first element of the beamformer vector can
be normalized without loss of generality, ψi = 0 is selected.
Then the problem becomes,

max
ψi

t

s.t.

M∑
m=2

2Pancos(argR
1m
k + ψm)

+

M−1∑
i=2

M∑
j=i+1

2Pancos(argR
ij
k + ψj − ψi) +MPan ≥ tγkσ2

k

k = 1, ..., N

ψi ∈ {0, θ, 2θ, ...(2n − 1)θ} (12)

Note that the setting in (12) is more than a simplification
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since in the following parts, the angular differences, ψj − ψi,
are expressed in terms of only the phase terms. In order to do
this, βij = ψj−ψi, is defined where i = 2, ...,M−1 and j =
i+1, ...,M . If the cosine terms in (12) are decomposed using
the trigonometric identities, the following problem setting is
obtained,

max
ψm,βij

t

s.t.

M∑
m=2

2Pan(cos(argR
1m
k )cos(ψm)− sin(argR1m

k )sin(ψm))

+

M−1∑
i=2

M∑
j=i+1

2Pan(cos(argR
ij
k )cos(βij)− sin(argR

ij
k )sin(βij))

+MPan ≥ tγkσ2
k (13)

k = 1, ..., N

ψi ∈ {0, θ, 2θ, ...(2n − 1)θ}
βij = +ψj − ψi, i = 2, ...,M − 1 and j = i+ 1, ...,M

ψm ∈ {0, θ, 2θ, ..., (2n − 1)θ} m = 2, ...,M

βij ∈ {−(2n − 1)θ, ...,−θ, 0, θ, ..., (2n − 1)θ}
i = 2, ...,M − 1, j = i+ 1, ...,M (14)

In order to convert the problem in (13-14) into a form sui-
table for integer programming, the following row vectors are
defined,

c = [ 1 cosθ cos2θ ... cos(2n − 1)θ ]

c̃ = [ cos(−(2n − 1)θ) ... cos(−θ) 1 cosθ ... cos(2n − 1)θ ]

s = [ 0 sinθ sin2θ ... sin(2n − 1)θ ]

s̃ = [ sin(−(2n − 1)θ) ... sin(−θ) 0 sinθ ... sin(2n − 1)θ ]
(15)

where θ is given in (10). Above vectors are used to select each
discrete phase angle contribution in a convenient form. Note
that the contributions for cosψm, sinψm, cosβij , and sinβij
are now represented by c, s, c̃, and s̃ respectively. Let v̂p be
the vector of zeros of length 2n with the pth element equal to
one. Let ûp be the vector of zeros of length (2n+1 − 1) with
the pth element equal to one, i.e.,

v̂p = [ 0 ... 1︸︷︷︸
pth element

... 0 ]T

ûp = [ 0 ... 0 1︸︷︷︸
pth element

0 ... 0 ]T

These vectors become the variables of the final optimization
setting. The multiplication of these vectors with c, s, c̃, and
s̃ generate the inequality expression in (13). Therefore the
problem in (13-14) can be written as,

max
vm,uij

t

s.t.

M∑
m=2

Qmvm +

M−1∑
i=2

M∑
j=i+1

Zijuij +MPan ≥ tγkσ2
k

k = 1, ..., N

[ 0 1 ... (2n − 1) ](−vi + vj) =

[ −(2n − 1) ... − 1 0 1 ... (2n − 1) ]uij (16)
i = 2, ...,M − 1, j = i+ 1, ...,M

vm ∈ {v̂1, v̂2, ..., v̂2n}
uij ∈ {û1, û2, ..., û2n+1−1} (17)

where

Qm = 2Pancos(argR
1m
k )c− 2Pansin(argR

1m
k )s (18)

Zij = 2Pancos(argR
ij
k )c̃− 2Pansin(argR

ij
k )̃s (19)

In the above formulation Qm and Zij vectors are known and
generate a linear inequality. In addition, there is no rank con-
dition which is ignored during semidefinite relaxation [1], [5].

In the above formulation, vm is the primary variable
and uij is the secondary variable to generate the constraints
between the phase terms and their differences as in (16). The
above problem setting generates always a feasible solution
and is suitable for mixed integer linear programming. Note
that a solution for both the inequality and equality constraints
can always be found from the given discrete set.

Once the solution for vm is found, the phase angles for
the beamformer vector are obtained as,

ψm = dTψvm

where dψ = [ 0 θ 2θ ... (2n − 1)θ]T and θ as in (10).
The optimization problem in (16-19) is solved using the

branch and cut algorithm [6] with mixed integer linear pro-
gramming. The problem in (16-19) matches with the linear
model given in [6](p.145). It is known that mixed integer
linear programming with branch and cut gives the optimum
solution for such an optimization problem [6](Theorem 1,
p.147).

3. SIMULATIONS

Proposed mixed integer linear programming for discrete
phase PO design is implemented by using the optimization
solver ”Gurobi” [7].

M=6 transmit antennas are used in a 3x2 planar array. The
distance between each antenna is 0.5λ where λ is the wave-
length. There are N=2 receivers which are considered as the
targets. The first target is a fixed target at (60◦, 90◦), which
correspond to the azimuth and elevation angles (φ, θ), respec-
tively. The second target is variable. Its elevation angle is
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fixed at 90◦ degrees and its azimuth angle is varied between
0◦ to 180◦ degrees. Different powers are assigned for the two
sources and γk coefficients are selected as γ1=1, γ2=2 res-
pectively for the targets. For simplicity, Pan = 1 is selected.
Noise variance for each channel is the same and σ2

k=1, k=1,2.
In Fig. 1, optimization parameter ”t” in (16) is presented

using n = 3 bits for phase quantization. Note that t =
min{SNR1

γ1
, SNR2

γ2
}. In this respect, ”t” shows the quality

of the solution. The larger it is, the better is the solution. Re-
sults of both brute force search and mixed integer linear pro-
gramming are compared. In case of brute force approach, all
the possible beamformer solutions are searched and the opti-
mum is found. As it is seen in Fig. 1, both approaches have
the same solution, which is expected due to the fact that pro-
posed approach is optimum. In our case, the computational
complexity is significantly lower than the brute force.

In Fig. 2, SNR for the first and second targets are shown
for n = 3 bits of phase quantization. The first target has
a staircase characteristic due to the discrete nature. The
beamformer does not change for Target 1 for a certain period.
While the same beamformer is in action for Target 2, its angu-
lar position changes at each azimuth angle scan and therefore
it does have different power at each angle. So, Target 2 shows
a more smooth characteristic.

In Fig. 3, discrete and continuous optimum PO beam-
formers are compared and mean square error (MSE) between
their beampatterns is presented.

MSE =
1

180

180◦∑
φ=1◦

(PC(φ)− PD(φ))2

where PC(φ) and PD(φ) are the transmitted power to the di-
rection ( φ, 90◦) by continuous phase PO beamformer and
discrete phase PO beamformer, respectively. Continuous op-
timum PO beamformer is obtained using convex optimization
for the second target fixed at ( 95◦, 90◦). At this specific
case, convex optimization results rank one solution and it is
the optimum solution. The number of bits, n, for the discrete
PO beamformer is increased from 3 to 8 to see the difference
for the beampatterns. As it is seen from this figure, n = 6 is
sufficient to get a good approximation with discrete PO beam-
former.

In Fig. 4, the beampatterns for both discrete and continu-
ous optimum PO beamformers are shown. Discrete PO beam-
former uses n = 6 bits. The beampatterns are very close to
each other indicating the good performance of the discrete PO
beamformer.

As it is pointed before, continuous PO beamformer de-
sign is not guaranteed to give the optimum solution. One of
the best approaches for continuous PO beamformer design is
given in [4]. The structure of this beamformer is discussed in
section 2.1. In Fig. 5, this beamformer is compared with the
discrete optimum beamformer. The optimization parameter
”t” is shown in this figure. In this case, Target 1 is at the same

angular position, i.e., (60◦, 90◦) and Target 2 elevation is fixed
at 90◦, but its azimuth angle is varied between 0◦ and 180◦.
n = 6 is selected for the discrete phase PO beamformer. As
it is seen from this figure, continuous phase beamformer be-
comes suboptimum at several points and discrete PO solution
is either better or very close to the continuous phase solution.

4. CONCLUSION

In this paper, discrete phase PO transmit beamformer design
is considered. The problem is cast as a maxmin design sui-
table for mixed integer linear programming. The formulation
is based on some cosine and sine vectors of discrete phase
angles. Such a formulation generates a feasible solution and
can be solved effectively using branch and cut algorithm. It is
shown that the proposed method results optimum solution and
as the number of quantization bits are increased, the quality of
the beamshape approaches to the continuous phase solution.
In this respect, only 6 bits are sufficient to get good results.
On the other hand, there is no guarantee that quantizing the
phase angles of an optimum continuous PO beamformer re-
sults the optimum discrete PO beamformer. This fact can be
easily checked using single user or target solutions.

Fig. 1. Optimization parameter ”t” using n = 3 bits for brute
force search and mixed integer linear programming.
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Fig. 2. SNR for first target and second target using n = 6 bits
for discrete solution.

Fig. 3. MSE between beampatterns of continuous and dis-
crete phase solution versus number of bits.

Fig. 4. Beampatterns for continuous and discrete solution
using n = 6 bits.

Fig. 5. Optimization parameter ”t” versus azimuth angle for
continuous and discrete solution.
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