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ABSTRACT

This paper investigates the design of optimal precoder for

multiple input multiple output (MIMO) channel subjected to

channel erasure and additive noise with known covariance.

The subchannel erasure process is modeled as an indepen-

dent Bernoulli process with known loss probabilities. The

MIMO channel is known to the transmitter and receiver. But

instantaneous erasure states are only known to receiver while

transmitter has the statistical information of the erasures. We

search for the optimal redundant linear correlating transform

coding to combat against channel impairments due to erasure

and noise by minimizing mean square error (MSE). While

the transmitter is designed to accommodate all the channel

scenarios, the minimum MSE (MMSE) receiver reconstructs

the source for each channel realization. We propose a method

based on linear matrix inequities (LMI) to solve for optimal

precoder which can be efficiently computed by well known

convex optimization toolbox. Effectiveness of this method is

demonstrated by simulation examples.

Index Terms— MMSE, MIMO, Erasure, LMI, Precoder

1. INTRODUCTION

The emergence of new applications in networked control sys-

tems and sensor networks demands new coding and decoding

schemes that can be integrated in system design to enhance

the reliability of communication in face of channel impair-

ments such as data loss and channel noise. It is well known

that the linear correlating transform (CT) is effective in reduc-

ing the reconstruction error at the receiver when erasures oc-

cur in the channel. For example, multiple description coding

(MDC) with correlating transform provides graceful degrada-

tion of the reconstructed signal during loss of data [1, 2, 3, 4].

The most frequently studied are the 2×2 and 3×3 transform

coders. In [5] and [6], an MMSE based general framework for

designing square linear coder and non-square redundant pre-

coder has been presented and solved by using iterative gra-

dient algorithm. The MDC-CT is a form of source coding
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Fig. 1. System Configuration

and ignores the channel characteristics such as channel gains,

noise and interference.

MMSE based joint precoder design with and without

channel state information (CSI) has been studied extensively

in the literature. Closed form analytical results based on ma-

trix decomposition [7] and semidifinite programming (SDP)

based solutions [8] have been presented. These MIMO pre-

coding designs investigate effect of channel noise and in-

terference under the criteria of bit error rate (BER), signal

to noise ratio (SNR), maximum information and maximum

capacity. The recent work [9] proposed unitary precoder to

minimize MSE for Gaussian erasure channel. In our previous

work [10], we proposed an LMI based solution for precoder

design for erasure MIMO channel without channel noise.

This paper extends the result of [10] to integrate chan-

nel noise. To our best knowledge, redundant joint precoder

design for MIMO channel subject to both erasure and noise

has not been considered before. Erasure channel is an ex-

treme case of a fading channel and assumes that the trans-

mitted symbols are completely lost or received without error.

This concept raises challenges in the problem formulation that

minimizes MSE of signal reconstruction, as it effects the in-

vertibility of the combined erasure MIMO channel.

In this work we assume that the MIMO channel is static
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and known at both transmitter and receiver and subjected to

erasure. The receiver has the instantaneous channel erasure

state information (ESI) but the transmitter has the statisti-

cal information of ESI. MIMO precoding with statistical in-

formation at transmitter [11] investigates a similar scenario

where the channel is modeled through the channel mean, co-

variance and random matrices. In contrast, we assume that

the erasure states are finite and therefore there is a finite num-

ber of erasure MIMO channels. This renders the formulation

of MMSE for each erasure scenario and then a weighted aver-

age sum of MMSE is minimized. An suboptimal precoder is

derived by a rank relaxed semi-definite programming subject

to LMI constraints.

The paper is organized as follows. In Section 2 we present

the system model and derive the primary optimization prob-

lem. In Section 3 we present the LMI based solution and

obtain the precoder design by rank approximation. The nu-

merical examples are given in Section 4.

2. SYSTEM MODEL

2.1. System Model

Consider the MIMO communication system with M trans-

mitters and K receivers as given in Fig. 1. The signal source

x ∈ R
N is a memoryless Gaussian random vector with zero

mean and known covariance E(xxT ) = Rx. The source sig-

nal is encoded by a redundant linear transformation, T ∈

R
M×N , generating correlated descriptions y ∈ R

M . With

M > N , the precoder adds redundancy to the transmission.

The MIMO communication channel denoted by H ∈ R
K×M

is the constant channel matrix with known channel param-

eters and full column rank M (K ≥ M ), n ∈ R
N is the

additive noise in the channel with zero mean and known co-

variance E(nnT ) = Rn. With M transmitters, the encoded

descriptions are transmitted separately. The MIMO channel

is subject to erasures. An erasure event occurs when a ran-

dom subset of the subchannels is erased from the receiver

side. The channel erasure state is defined through the ma-

trix Pe ∈ R
Le×K , where Le is the number of subchannels

received at the estimator. When there are no erasures the ma-

trix Pe is a K × K identity matrix. When an erasure event

occurs, the respective rows from Pe are removed to denote

the erasure. Thus the dimension of Pe varies depending on

the channel erasure state. The number of the received de-

scriptions Le depends on the channel erasure state at the time.

With K receivers, there are 2K channel states. At the receiver,

a linear MMSE estimator Ve ∈ R
N×L reconstructs the source

signal based on the signal received after erasure. In this work,

we assume that the estimator has information of the channel

erasure states, Pe, during transmission and the channel matrix

H . The decoder here is also a matrix with variable dimension.

The transmitter only has the channel stochastic information

and does not know individual channel realization during the

transmission.

In the sequel, we will investigate the design of the pre-

coder T and the MMSE estimator Ve to minimize the signal

reconstruction error in the MIMO communication system de-

scribed above.

2.2. Problem formulation

From Figure 1 the received signal at the estimator is

z = PeHTx+ Pen. (1)

Then the estimator output is

x̂ = Vez. (2)

Since the source x has zero mean and covariance Rx, the

received vector also has zero mean and covariance Rz =
E(zzT ) = PeHTRxT

THTPT
e + PeRnP

T
e and cross co-

variance of Rxz = E(xzT ) = RxT
THTPT

e and Rzx =
E(zxT ) = PeHTRx. Define Rne := PeRnP

T
e . Then the

MMSE estimate at the receiver is [12]

x̂ = RxzR
−1
z z = RxT

THTPT
e (PeHTRxT

THTPT
e

+Rne)
−1z

with the optimal MMSE estimator for a given precoder T

given by

Ve = RxT
THTPT

e (PeHTRxT
THTPT

e +Rne)
−1.

Then the MMSE is

De = Tr(Rx −RxzR
−1
z Rzx)

= Tr(Rx −RxT
THTPT

e (PeHTRxT
THTPT

e

+Rne)
−1PeHTRx). (3)

Above derivation is for a specific state of channel erasure ma-

trix Pe. In our work, the precoder is designed to address an

arbitrary number of channel states. Since Pe is a stochastic

variable that depends on the erasure process, the distortion is

also a stochastic variable. Hence the precoder is designed to

minimize the weighted sum of the distortion.

D =
E
∑

e=1

we ×De.

The weighting we can be arbitrary and can be selected based

on the optimization requirement. In this paper we select the

weighting such that we is the inverse of the probability of the

channel in the erasure state. Let λ be the probability of erasure

of a subchannel. Then we = 1
λK−Le×(1−λ)Le

. Another point

to note is that the precoder design formulation excludes the

case where all the sub-channels are lost as it is impossible

to improve the performance by precoding for such scenario.

Hence the objective function for the precoder design is

D =
E
∑

e=1

we ×De =
E
∑

e=1

weTr[Rx −RxT
THTPT

e

(PeHTRxT
THTPT

e +Rne)
−1PeHTRx] (4)
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where E is the number of channel scenarios considered for

the optimization problem, and the maximal value of E is

EMAX = 2K − 1. Thus the optimal full rank precoder for

MMSE estimation can be obtained from solving the following

optimization problem

min
T

D = min
T

Tr

[ E
∑

e=1

we

(

Rx −RxT
THTPT

e

(PeHTRxT
THTPT

e +Rne)
−1PeHTRx

)

]

(5)

with transmission power constraint Tr(TRxT
T ) ≤ PTX ,

PTX ∈ R and 0 < PTX < ∞.

3. LMI FORMULATION

The cost function in (5) is neither a convex nor concave func-

tion of the optimization variable T , and its direct minimiza-

tion is difficult. Therefore we propose to optimize an upper

bound of the cost function given in (4). Taking Rx out and

following [13], it can be shown that

De ≤ Tr(Rx)Tr
(

IN −R
1
2
x T

THTPT
e (PeHTRxT

THPe

+Rne)
−1PeHTR

1
2
x

)

. (6)

Excluding Tr(Rx) as it is a constant, the optimization prob-

lem is reduced to

min
T

D̃ = min
T

Tr

[ E
∑

e=1

we

(

IN −R
1
2
x T

THTPT
e (PeHT

RxT
THTPT

e +Rne)
−1PeHTR

1
2
x

)

]

(7)

subject to Tr(TRxT
T ) ≤ PTX .

The problem (7) is equivalent to (5) when Rx = IN but not

convex with respect to the precoder matrix T . To circum-

vent this difficulty, (7) is reformulated by introducing the new

matrix variables F and We such that

F = TRxT
T (8)

We = (PeHTRxT
THTPT

e +Rne)
−1

= (PeHFHTPT
e +Rne)

−1. (9)

Then using Tr(A + B) = Tr(A) + Tr(B), Tr(AB) =
Tr(BA) and simple algebraic operations, the weighted dis-

tortion D̃ can be written as

D̃ =
E
∑

e=1

we Tr
(

IN
)

−

E
∑

e=1

we Tr
(

R
1
2
x T

THTPT
e (PeHT

RxT
THTPT

e +Rne)
−1PeHTR

1
2
x

)

=
E
∑

e=1

weN −

E
∑

e=1

weTr

[

We(W
−1
e −Rne)

]

=

[ E
∑

e=1

we(N − Le)

]

+
E
∑

e=1

weTr(WeRne). (10)

The first term in (10) is a constant and independent of the

precoder T . Therefore, the constant term is excluded from

the optimization. Then the optimization problem is further

reduced to

min
We,F

Tr
E
∑

e=1

weWeRne (11)

subject to

We =(PeHFHTPT
e +Rne)

−1,We ≥ 0 (12)

for e = 1, 2, ..., E

Tr(F ) ≤ PMAX , rank(F ) = N, F ≥ 0, F = FT . (13)

The precoder T in the original problem is substituted by the

symmetric positive definite matrix F such that F = TRxT
T .

Since T is a rank N matrix, F should also have rank N . But

having the rank constraint makes above problem non-convex

and hence difficult to solve. Therefore the rank constraint is

removed from the optimization to obtain a relaxed version of

the problem. Also the set of inequalities for We is relaxed

with We ≥ (PeHFHTPT
e + Rne)

−1 and converted to a set

of LMIs using Schur complement [14]. The following relaxed

optimization problem is obtained.

min
F,We

Tr
E
∑

e=1

weWeRne (14)

subject to
[

We ILe

ILe
PeHFHTPT

e +Rne

]

≥ 0, We ≥ 0, (15)

We = WT
e for e = 1, 2, ..., E

Tr F ≤ PMAX , F ≥ 0, F = FT (16)

The above problem is convex with respect to the variables F

and We. Thus solution of the above problem yields a globally

optimal solution for the matrix F and can be solved using the

interior point method in MATLAB LMI and CVX toolboxes

[15]. Since the rank constraint is dropped the optimal F is

a full rank matrix. The next problem is to extract the rank

reduced M × N precoder matrix T from the optimal F effi-

ciently such that TRxT
T = F and Tr(TRxT

T ) = Tr(F ).

One method to find the low rank approximation is by

ignoring the lowest singular values of the original matrix

F [16]. Let the singular value decomposition for F, T

and Rx be F = UF∆FU
T
F , T = UT∆TV

T
T and Rx =

UR∆RU
T
R , respectively, where UF , UT , VT and UR are or-

thogonal matrices with UF , UT ∈ R
M×M , UR, VT ∈ R

N×N ,

and ∆F ,∆R and ∆T are diagonal matrices in the form

∆F = diag(f1, f2, . . . , fM ), ∆R = diag(r1, r2, . . . , rN )
with f1 > f2 > · · · > fM and r1 > r2 > · · · > rN . Then

from (8), we get

F = UF∆FU
T
F = UT∆TV

T
T UR∆RU

T
RUT

T ∆T
TVT . (17)
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Equating UT = UF and VT = UR, (17) can be diagonalized

to

∆F = ∆T∆R∆
T
T (18)

with ∆T =
( ∆̃TN×N

0(M−N)×N

)

, ∆̃T = diag(t1, t2, . . . , tN ) and

t1 > t2 > · · · > tN . Partitioning ∆F =
(

∆F1 0
0 ∆F2

)

such

that ∆F1 contains the maximum N eigenvalues in descending

order, we can derive the low rank approximation for precoder

T as

T = UF

[

∆
1
2

F1 ×∆
−

1
2

R

0(M−N)×N

]

UT
R (19)

This method is optimal if the ∆F2 has significantly less en-

ergy compared to ∆F1. As this is not the general case, we

propose to distribute the energy in ∆F2 proportionately to di-

agonal components of the precoder such that

T = UF





(

(

Tr(∆F2)
Tr(∆F1)

+ 1
)

∆F1

)
1
2

×∆
−

1
2

R

0(M−N)×N



UT
R . (20)

4. NUMERICAL EXAMPLES

This section illustrates the proposed method and presents two

example. A 3 × 2 precoder design for 3 × 3 MIMO channel

with all the possible erasure states and 4× 3 precoder design

for 4× 4 MIMO channel with only six erasure states are con-

sidered.

Example 1: A random Gaussian source with a know co-

variance matrix of
(

3.7525 1.4053
1.4053 2.1466

)

is considered. The source

is transmitted through a known MIMO channel of 3 trans-

mitters and 3 receivers with additive Gaussian noise of co-

variance 0.1I3. We derived the optimal 3 × 2 precoder that

minimizes the weighted sum of distortion for all channel era-

sure states, P1 = [1 0 0], P2 = [0 1 0] and P3 = [0 0 1],

P4 =
[

1 0 0
0 1 0

]

, P5 =
[

1 0 0
0 0 1

]

, P6 =
[

0 1 0
0 0 1

]

, P7 =
[

1 0 0
0 1 0
0 0 1

]

,

with 10 watts total output power constraint by solving (14)

and obtaining the low rank approximation.

T3×2 =

[

0.8366 0.1271 1.0166
0.7281 0.1048 −1.4945

]T

.

Example 2: Here the optimal 4 × 3 precoder that min-

imizes the weighted sum of distortion for channel erasure

sates P1 =
[

1 0 0 0
]

, P2 =
[

0 1 0 0
]

, P6 =
[

1 0 0 0
0 0 1 0

]

,

P10 =
[

0 0 1 0
0 0 0 1

]

, P12 =
[

1 0 0 0
0 1 0 0
0 0 0 1

]

and P14 =
[

0 1 0 0
0 0 1 0
0 0 0 1

]

was

derived for 4× 4 MIMO channel. The total output power was

constrained to 10 watts.

T4×3 =





0.0102 −2.0284 1.5733 −0.4047
0.8689 0.7443 1.1442 1.2834
0.6529 −0.1855 −2.1024 1.3685





T

.

The expected value of distortion was calculated for a

range of erasure probabilities. The figure 2:(a)-(b) compares

the resultant precoder with the precoder designed without

considering channel noise [10] and the precoder designed

considering only channel noise but not erasures. Also the

performance of precoder in Example 1 was compared with

frame Tmb =
[

1 −
1
2 −

1
2

0 −

√
3

2

√
3

2

]T

and with a cascaded precoder

[4] for 4× 3 case in example 2. The figure 2:(c)-(d) presents

the performance of the side distortions for each precoder.

5. CONCLUSION

This paper has proposed a novel method for jointly design-

ing optimal precoder and decoder for MIMO channel subject

to erasures and channel noise. The proposed method is in

the form of convex optimization subject to LMI constraints,

which can be easily solved for globally optimal solution using

standard semi-definite programming software. The numeri-

cal examples shows the effectiveness of the optimal precoder

against channel losses and noise. In contrast to noiseless case,

the precoding does not generate balanced descriptions. When

more channels are received the channel noise is the major con-

tributor to the distortion and the precoder is more effective in

such situations. Nevertheless the weighted average distortion

is still minimal for the designed precoder. However the op-

timization problem in (14)-(16) gives an suboptimal solution

due to (6) and rank relaxation.
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Fig. 2. (a)-(b): The average distortion variation across erasure

probabilities. (c)-(d): Comparison of side distortion
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