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ABSTRACT

In this paper we present a modified hidden Markov model

(HMM) for the fusion of received signal strength index

(RSSI) information of WiFi access points and relative po-

sition information which is obtained from the inertial sensors

of a smartphone for indoor positioning. Since the states of

the HMM represent the potential user locations, their number

determines the quantization error introduced by discretizing

the allowable user positions through the use of the HMM. To

reduce this quantization error we introduce ”pseudo” states,

whose emission probability, which models the RSSI mea-

surements at this location, is synthesized from those of the

neighboring states of which a Gaussian emission probability

has been estimated during the training phase. The experimen-

tal results demonstrate the effectiveness of this approach. By

introducing on average two pseudo states per original HMM

state the positioning error could be significantly reduced

without increasing the training effort.

Index Terms— Indoor positioning, fingerprint, pseudo

node, step detection, RSSI measurement

1. INTRODUCTION

Accurate user positioning inside buildings in the absence of

an extra infrastructure dedicated to localization remains to

be an important research challenge, because the GPS signal,

which is the key component of outdoor localization, is usually

not available.

Two classes of approaches to estimate the position of user

inside buildings are common. One of them, the fingerprinting

method, is utilizing existing wireless communications infras-

tructure, such as WiFi, by measuring the RSSI and comparing

it with a database of RSSI measurements generated in a train-

ing phase. Positioning is then formulated as a classification

problem, where the measured RSSI value is classified to that

position, which, according to the training data, is most prob-

able [1, 2]. The classification can be conducted with different

classifiers, such as support vector machines [1] or k-nearest
neighbor (K-NN) [3, 4]. Prominent examples of systems

falling in this category are the RADAR [5] and LOCATOR

system [6].

The other class of approaches relies on inertial sensors to

track a user starting from a known location [7]. As today’s

smartphones are equipped with a multitude of sensors, infor-

mation of other sensors, such as a camera, may also be fused

with the inertial sensor information to improve accuracy.

Various combinations of the aforementioned two classes

of approaches have been proposed. Sensor fusion may be

achieved by a Kalman filter [8] or with the use of a HMM.

In the latter case the hidden states represent the possible user

locations. In the HMM approach of [9] and [10] the RSSI

measurements and the inertial sensor information are taken as

observations attached to the hidden state, the user position,

and the transition probabilities between the states are chosen

to reflect which positions are accessible from a given state,

i.e., user position, within one measurement interval. The user

is then tracked by employing either the Viterbi, the Forward,

or the Forward-Backward algorithm. The latter, however, is

only of academic interest, because the induced latency is not

acceptable.

The paper at hand also employs a HMM based sensor fu-

sion of RSSI and inertial sensor information. The problem

we are addressing here is the reduction of the quantization

error introduced by the HMM. On the one hand the number

of HMM states should be small in order to reduce the train-

ing effort, as for each position a multitude of RSSI measure-

ments are to be recorded to learn a model (the expected signal

strengths). On the other hand a dense grid of possible user lo-

cations is desirable to track the user closely. In this paper we

propose an approach, which employs a fairly coarse grid of

states for which RSSI measurements need to be taken during

training, while at the same time achieving a low discretiza-

tion error. This is achieved by introducing ”pseudo” states

in-between the regular HMM states. The emission probabil-

ity density functions (PDF) of the pseudo states are computed

from the models of the neighboring regular states. By doing

so, the quantization error can be significantly reduced at no

increase in training effort, resulting in an overall improved

positioning accuracy.

The paper is organized as follows: In the next section we

describe the HMM-based sensor fusion and show how the in-

dividual knowledge sources are combined to arrive at an esti-

mate of the user location. In Section 3 we briefly review our
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approach to compute the likelihood of RSSI measurements in

the presence of clipped observations [11]. Section 4 describes

how the inertial sensor measurements are employed for step

detection, from which a movement vector is obtained. The

modified HMM incorporating the pseudo states is presented

in Section 5. Section 6 presents experimental results, both

on artificial and on field data, and the paper finishes off with

some conclusions in Section 7.

2. HMM-BASED SENSOR FUSION

In [9, 10] a hidden Markov model (HMM) is used to combine

RSSI measurements and step detection for position estima-

tion. The hidden states comprise the possible user positions,

of which reference RSSI fingerprints have been recorded in

the training phase. The estimation of the user position can

then be carried out either by the Forward algorithm or by the

Viterbi algorithm. While the former computes the probability

of being in a certain state by gathering the probabilities over

all possible predecessor states, the latter considers only the

most probable predecessor. In the following we consider the

Forward algorithm.

Let st denote the value the hidden state variable takes at

time t, which we identify with the position of the user at time

t: if st = j then the user is at the location ℓj at time t, where
ℓj is a two-dimensional vector containing x and y coordi-

nates of the user’s location. Further, let o1:t = [o1, . . .ot]
be the sequence of RSSI measurements up to time t. The

step detection information is gathered in the sequence v1:t =
[v1, . . .vt], where the two-dimensional movement vector vt

denotes the traversed route from the user position at time

t− 1 to time t. Our goal is to compute P (st=j|v1:t,o1:t),
i.e., the probability of being in state j for all possible user

positions ℓj , j = 1, . . . , J , given all RSSI values and step de-
tection vectors measured sofar. Using Bayes’ rule, the proba-

bility can be expressed as follows:

P (st=j|v1:t,o1:t) =
P (st=j,v1:t,o1:t)

p(v1:t,o1:t)

∝ p(st=j,v1:t,o1:t) =: αt(j), (1)

where the so-called Forward variable αt(j) is the probabil-

ity of being at time t in state j, while having observed the

sequence of o1:t and v1:t.

The forward variable can be written as follows [10]

αt(j) =
∑

i

p(st=j, st−1=i,v1:t,o1:t)

=
∑

i

p(vt|st=j, st−1=i,v1:t−1,o1:t−1,ot)

· p(ot|st=j, st−1=i,v1:t−1,o1:t−1)

· P (st=j|st−1=i,v1:t−1,o1:t−1)

· P (st−1=i,v1:t−1,o1:t−1). (2)

Applying the properties of the HMM, which are depicted in

the graphical model of Fig. 1, and assuming the step detection

and RSSI information to be statistically independent of each

other given the user location, we arrive at

αt(j) =
∑

i

p(vt|st=j, st−1=i) · p(ot|st=j)

· P (st=j|st−1=i) · P (st−1=i,v1:t−1,o1:t−1)︸ ︷︷ ︸
=αt−1(i)

(3)

which is a recursion of the forward variable.

The final location estimate ℓ̂ is obtained by the weighted

average over the set P of theM most likely positions:

ℓ̂ =
1∑

k∈P

αt(k)

∑

k∈P

αt(k) · ℓk. (4)

Equation (3) shows how the different knowledge sources

are combined. The transition probabilities P (st=j|st−1=i)
are nonzero only for those locations ℓj that can be reached

from position ℓi within one time step. The choice of the

transition probabilities thus encodes our knowledge about the

floor plan. The term p(ot|st=j) is the likelihood of the RSSI
measurement ot, assuming the user’s position is ℓj . Its com-

putation is described in the next section. The movement in-

formation gathered from the step detection is captured by the

term p(vt|st=j, st−1=i), i.e., the likelihood of observing the
movement vector vt when moving from position ℓi to ℓj . Its

computation is detailed in Section 4.

Note that this derivation assumes that RSSI measurements

are obtained at the same rate as the step detection information.

In Section 5 we show how a dense grid of possible user loca-

tions can be obtained despite coarse grid RSSI measurements.

st−1 st st+1

ot−1 ot ot+1

vt vt+1

Fig. 1. HMM for position estimation based on the fusion

of RSSI and movement vector observations o and v, respec-

tively.

3. TREATMENT OF CENSORED DATA

The WiFi receivers used in smartphones or other mobile

devices have a finite sensitivity, which is limited to, e.g.,

the range of −30dBm to −100dBm. Thus, if for exam-

ple the signal strength of a far away access point falls be-

low −100dBm the value is clipped and a RSSI value of

−100dBm will be output.

In [11] we proposed an Expectation Maximization (EM)

algorithm to estimate the parameters of a Gaussian from

clipped observations. Let õi, i = 1, . . . , N be draws from

2
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N (µ, σ2). These draws are censored according to

oi = max(õi, c) =

{
õi zi = 0

c zi = 1
. (5)

Here, c is the clipping threshold, and the binary variable zi
indicates whether an observation is clipped (zi = 1) or not
(zi = 0). For simplicity of exposition we consider only one-

sided clipping. In [11] we have shown that the following iter-

ative algorithm

µ(κ+1) =
1

N

N∑

i=1

(1− zi)oi +
1

N

I1(θ
(κ))

I0(θ(κ))

N∑

i=1

zi (6)

(
σ2

)(κ+1)
=

1

N

N∑

i=1

(1 − zi)
(
oi − µ(κ)

)2

+

[
I2(θ

(κ))

I0(θ(κ))
− 2µ(κ) I1(θ

(κ))

I0(θ(κ))
+
(
µ2

)(κ)
]

1

N

N∑

i=1

zi. (7)

delivers unbiased and efficient parameter estimates. Here, κ
is the iteration index of the EM algorithm and θ = (µ, σ2)
denotes the parameters to be estimated. Further

Ij(θ
(κ)) =

∫ c

−∞

yjN
(
y; θ(κ)

)
dy. (8)

During classification we need to compute the likelihood

of an observation vector o =
(
o1· · · oNAP

)T
, comprising the

RSSI values of NAP WiFi access points (APs), for an hypoth-

esized user location ℓk. To account for censored data this is

carried out as follows

p(o|ℓk) =
NAP∏

i=1

p(oi|ℓk) (9)

where

p(oi|ℓk) =

{
N (oi; µ̂ℓk,i, σ̂

2
ℓk,i

),if oi > c

I0(µ̂ℓk,i, σ̂
2
ℓk,i

), if oi = c
. (10)

Here, (µ̂ℓk,i, σ̂
2
ℓk,i

) are the estimated parameters of the i-th
AP at location ℓk. In case all observations of the i-th AP at

fingerprint location ℓk are clipped, the mean estimate is set to

a small value µ̂ℓk,i ≪ c and σ̂2
ℓk,i

is set to an average value.

4. STEP DETECTION ANDMOVEMENT VECTOR

ESTIMATION

The step detection system proposed in [10] is depicted in Fig.

2. The step detection uses the 3-dimentional acceleration vec-

a

m

g

gyr

‖a‖ ‖a′‖

−
G

‖a′‖tp

R

dψ

ψ̂

Steps

ψ
step length

v1:t
‖ · ‖ Lowpass

Orientation

Angular
velocity

Kalman filter

Position estimationStep detection

Fig. 2. Step detection and position estimation system

overview

tor a from the accelerometer of the smartphone. Its absolute

value ‖a‖ is calculated and the gravity constant G is sub-

tracted from it. A lowpass filter is then applied to reduce the

influence of sensor errors. Step detection is carried out on the

output of the lowpass filter by counting the number of times

the signal exceeds a certain threshold. This avoids spurious

step counts caused by noise which may occur in the peak de-

tection method of [12] and the zero crossing counter of [13].

The heading estimation uses the magnetometer data m

and the gravity information g to calculate the rotation matrix

R and the magnetometer yaw angle ψ. The matrix R is re-

quired for projecting the gyroscope data gyr into the world

coordinate system and subsequently estimating the yaw an-

gle velocity dψ. A Kalman filter is used for fusing the two

information sources to obtain a yaw angle estimate ψ̂.

The movement vector vt, which is the difference of the

user position at time t and t − 1, is then calculated by com-

bining the estimate of the number of detected steps with the

movement heading estimate. To this end, an average step

length has to be estimated in advance.

The PDF of the movement vector is assumed to follow a

Gaussian distribution with a mean vector µi,j = ℓj − ℓi and

a predefined diagonal covariance matrixΣv:

p(vt|st=j, st−1=i) =
e(−

1

2
(vt−µi,j)

TΣ−1

v (vt−µi,j))
√
(2π)2|Σv|

(11)

5. INTRODUCTION OF PSEUDO-STATES

While the desire to limit the training effort asks for a small

number of HMM states and a correspondingly large average

distance between potential user positions, a large number of

HMM states is preferable to have a small position quantiza-

tion error and thus improved positioning accuracy.

In order to improve this tradeoff we suggest to introduce

pseudo states in-between two regular HMM states of which

RSSI measurements have been taken during training. By this

the average distance between two allowable user positions can

be reduced. These pseudo states, however, lack a model of the

RSSI measurements at these positions. The emission PDF is

then computed as the product of the emission PDFs of the two

closest neighboring regular states, where each PDF is raised

to a power which decreases linearly from one to zero as a

function of the distance of the pseudo node from the regular

node. More clearly, the parameters (µℓj , σ
2
ℓj
) of the Gaussian

emission PDF of a pseudo state st = j are computed by a

weighted multiplication of those of the two neigboring states

i and k, and results in

µℓj =
σ2
ℓk
d(ℓk, ℓj)µℓi + σ2

ℓi
d(ℓj , ℓi)µℓk

σ2
ℓi
d(ℓj , ℓi) + σ2

ℓk
d(ℓk, ℓj)

. (12)

σ2
ℓj

=
σ2
ℓk
σ2
ℓi
d(ℓi, ℓk)

σ2
ℓi
d(ℓj , ℓi) + σ2

ℓk
d(ℓk, ℓj)

. (13)

Here, d(ℓi, ℓj) denotes the Euclidian distance between ℓi and
ℓj .

Note that during testing RSSI measurements are taken at
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regular time instances, thus, the position at which the RSSI is

measured may not coincide with a regular HMM state.

6. EXPERIMENTAL RESULTS

In the following we are going to evaluate the effectiveness of

the proposed modified HMM for an indoor localization prob-

lem. We will first consider artificially generated data and then

present results on real field data.

6.1. Artificial Data

Fig. 3 shows the floor plan of our department at the University

of Paderborn consisting of 10 office rooms, a long aisle and a

staircase area having an overall size of 34m by 23m (a), with

the locations of the regular and pseudo states (b) marked with

red and green circles, respectively.

(a) Floor plan (b) Modified HMM states

Fig. 3. Floor plan displaying the HMM states, i.e., the allow-

able user positions, and the transitions between them. Red

and green circles indicate regular and pseudo states, respec-

tively.

The RSSI measurements of 15 randomly placed APs for

training the Gaussian emission PDF for the regular HMM

states are generated artificially as follows: The signal strength

follows a large-scale log-normal fading model with an addi-

tional zero mean Gaussian random variable with standard de-

viation σL = 5 to model small-scale fading. At each position,

we collected a set of 300 RSSI measurements as the training

data, then estimated the parameters of RSSI distribution of

each AP at each position as described in Section 3.

The step detection information is modeled as a bivariate

Gaussian with the meanµi,j = ℓj −ℓi and a diagonal covari-

ance matrix Σv with entries Σv[1, 1] = Σv[2, 2] = 0.25m2.

This value has been determined in offline experiments.

In our experiment, we introduced pseudo states such that

the Euclidean distance between neighboring states is not more

than at most 0.75m (which is close to the measured average

step length within the experimental data), while the distance

between two neighboring regular states is about 3-5 m except

for some special areas such as the stairs. The total number of

pseudo states is 125, which has to be compared to the number

of 81 regular states.

In the experiments we assume that a user cannot move

faster than 3m/s. User movements are simulated by a ran-

Table 1. Mean positioning error on artificial data

Method Mean error [m]

RSSI only [11] 1.74

RSSI + step det. [10] 1.37

RSSI + step det. + pseudo states (here) 1.02

dom walk on the HMM graph. Since movement vectors and

RSSI measurements are generated every 1.5 s, only a limited

numberU of HMM states can be reached from any given state

st−1=i (on the average U=15 states) and the corresponding

transition probability P (st=j|st−1=i) is set to 1
U
. For all

states outside this neighborhood the corresponding transition

probability is set to zero.

Table 1 presents the mean positioning error in meters, av-

eraged over 100 experiments, where each experiment corre-

sponds to a different randomwalk on the HMM grid of length

of about 200m. We compare the performance of the pro-

posed algorithm with our earlier work of [10], which also

fused RSSI and step detection information, however without

the introduction of pseudo states. The use of pseudo states

improves the mean positioning error from 1.37m to 1.02m.

If step detection information is neglected and user positioning

relies only on RSSI information, a mean positioning error of

1.74m is obtained.

6.2. Field Data

We have tested our approach with the field data recorded in

the office building depicted in Fig. 3. In the training phase,

we collected 100 RSSI measurements per position and es-

timated the RSSI distribution as described in Section 3. In

the online testing phase, the smartphone user randomly went

through the whole floor area to collect the test data. Two dif-

ferent trajectories were recorded, each trajectory consists of

approximately 140 test potitions. The position estimate was

performed every 1.5 s using the proposed approach. The step
detection information is modeled in the same fashion as in the

experiments using artificial data.

From our experimental results, we realized that the step

detection information is much more reliable than the RSSI

information, so we decided to introduce a heuristic weighting

factor γ in the calculation of the forward variable as follows

αt(j) = [p(ot|st=j)]γ

.
∑

i

[p(vt|st=j, st−1=i)](1−γ) · P (st=j|st−1=i) · αt−1(i).

(14)

For the determination of γ a jackknife procedure was em-

ployed: The data of one out of the 2 trajectories was used

for the estimation of γ, whereas tests were conducted on the

held-out data. This was repeated 2 times every time one tra-

jectory was used to estimate γ. In our case, the estimated

value was always γ ≈ 0.003.
We compared the proposed approach to our earlier work

4



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

of [10] and [11]. Note that the weighting was also applied

when implementing [10]. There, the weight was approxi-

mately 0.003. For both trajectories the experimental results

showed that our new approach outperforms the others, espe-

cially for the 90% error quantile, in terms of the cumulative

distribution function (CDF) of the positioning error which is

defined as the probability that the positioning error ǫ is lower
than a certain distance d:

CDFǫ(d) = P (ǫ ≤ d) d ≥ 0. (15)

Although the test area is limited, the experimental results in

Fig. 4 indicate that the proposed approach is significantly bet-

ter than the other approaches.

 

 

RSSI only [11]

HMM RSSI+STEP [10]

Proposed algorithm
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Fig. 4. CDF of the positioning error for different systems.

Average over 2 test trajectories.

7. CONCLUSIONS

In this paper we have presented a modified HMM and For-

ward algorithm for indoor positioning to fuse the RSSI and

step detection information. Through the introduction of

pseudo states of which the emission probabilities are syn-

thesized from those of the neighboring regular states, the

quantization error introduced by discretizing to possible user

locations to the positions corresponding to the HMM states

could be significantly reduced. The performance of the ap-

proach was first validated on artificially generated data and

subsequently tested on real field data of an experimental in-

door positioning system. Improved positioning accuracy was

observed, compared to our earlier work.
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