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ABSTRACT 

 

Human behavior analysis for Cognitive Surveillance 

Systems (CSS) share mainly the concept that it can be time 

to extend functionalities beyond simple video analytics. In 

most recent systems addressed by research, automatic 

support to human decisions based on object detection, 

tracking and situation assessment tools is integrated as a part 

of a complete cognitive artificial process. In such cases a 

CSS needs to represent complex situations that describe 

alternative possible real time interactions between the 

dynamic observed situation and operators’ actions. To 

obtain such knowledge, particular types of Event based 

Dynamic Bayesian Networks E-DBNs are here proposed. In 

this paper it is shown how, by means of Run Length 

Encoding (RLE) of off line acquired information, the 

cognitive system is able to represent and anticipate possible 

operators’ actions within the CSS. Results are shown by 

considering a crowd monitoring application in a critical 

infrastructure. A system is presented where a CSS 

embedding in a structured way RLE E-DBN knowledge can 

interact with an active visual simulator of crowd situations. 

Outputs from such a simulator can be easily compared with 

video signals coming from real cameras and processed by 

typical Bayesian tracking methods. 

 

Index Terms — Event based DBN, bio-inspired 

learning, cognitive system, interaction modeling, crowd 

monitoring 

 

1. INTRODUCTION 

Video analytics for surveillance in critical areas is becoming 

more significant for public security. Several works have 

been devoted in the last decade to link traditional computer 

vision tasks to high-level context aware functionalities such 

as scene understanding, behavior analysis, interaction 

classification or recognition of possible threats or dangerous 

situations. Most current automated video surveillance 

systems can process video sequences and perform almost all 

key low-level functions, using some principal techniques: 

visual objects detection - segmentation, object tracking and 

object classification [1], [2]. For example, in [3] is presented 

a technique for automatic detection of relevant abnormal 

events in video surveillance application. Recently, technical 

interest in video surveillance has moved from such low-

level functions to more complex scene analysis to detect 

human and/or other object behaviors. Several recent studies 

have proposed the application of smart functionalities to 

camera and sensor networks in order to move from object 

recognition paradigm to event/situation recognition one [4]. 

Among the several disciplines which are involved in the 

design of next generation security and safety systems, bio-

inspired processing approaches [5] represent one of the most 

promising in terms of capability of provoking improvements 

with respect to state of the art. In fact studies in cognitive 

science nowadays allow to explain human reasoning 

functions at higher semantic level than in previous decades. 

For example [6] shows how the application of bio-inspired 

models to safety and security tasks can represent a relevant 

added value in understanding the dynamic evolution of 

complex scenes, where multiple patterns interact in 

accordance with specific dynamic relations feature and time 

spaces. In addition, to efficiently exploit cognitive 

capabilities in an intelligent sensor network, the role of data 

fusion architecture and algorithms is crucial, [7]. In the 

literature, several works deal with data fusion problem 

applied to heterogeneous sensors for security [8] and safety 

tasks [9]. A video analytics automatic system is able to 

extract visual objects from video frames applying multi 

levels analysis, in order to model monitored entity 

behaviors. In [10] experience acquisition importance from 

the interactions with the environment in order to make 

decisions, is shown, from intelligent system point of view.  

A crowd monitoring scenario is here considered, where a 

human operator controls an environment and interacts with 

the people in it, through actions aiming at restoring 

normality after abnormal crowding event detection. In this 

section the proposed learning and predictive models are 

compared. It is shown that operator capability at the 

decision level can be extended by allowing the system to 

learn and use more simple operator regulation actions.  

The next paper’s sections are organized as follows: the 

proposed model will be discussed in section 2 and 3. Section 

4 is focused on the presentation an applicative scenario. In 

the section 5, results and conclusion are presented. 

 

2. COGNITIVE SURVEILLANCE NODE 

 

In this work, a probabilistic model based on a specific type 

of event based Dynamic Bayesian Networks (E-DBNs) is 

discussed that comes from a bio-inspired perspective. The 

bio-inspired approach and a possible implementation by 

using the so called Autobiographical Memories (AMs) has 

been already discussed in [11] [12], based on the work of 
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the neuro-physiologist A. Damasio [5]. Damasio’s theories 

describe the cognitive entities as complex systems capable 

of incremental learning based on experience of the 

relationships between themselves and the external world. 

Two specific brain processes can be defined to formalize the 

above concept called proto-self and core-self. Such devices 

are specifically referred to monitor and manage respectively 

the internal status of an entity (proto-self) and the 

relationships with the external world (core-self). Thus, a 

crucial aspect in modeling a cognitive entity following 

Damasio’s model is represented, on the one hand, by the 

capability of accessing entity’s internal status and, to the 

other hand, by the knowledge and analysis of the 

surrounding environment. These concepts are the guidelines 

to design a Cognitive Surveillance Node, in which two types 

of sensors are mapped into a sensing framework, namely 

endo (or proto-sensors) and eso-sensors (or core-sensors). 

Endo-sensors and eso-sensors monitor the internal or 

external state of the interacting entities, respectively. Dore et 

al. demonstrate AM capability to store the spatio-temporal 

information about the relationships which occur between 

two interacting entities. Specifically, it is proposed that 

proto-core-proto or core-proto-core triplets of events are 

stored into the AM, defining passive interactions (passive 

triplets) and active interactions (active triplets) between a 

reference entitiy and an interacting one. In [6], [11], [12] the 

states dynamic evolution of each entity is represented by a 

probabilistic model based on E-DBNs. Furthermore, 

Coupled E-DBNs (C E-DBNs) are introduced as guideline 

for interactions representation problem between entities. In 

this paper a new type of C E-DBNs is proposed, in which 

the causality relationships, among the events, is highlighted. 

In the proposed C E-DBNs structure, strong causality 

constraints are introduced. A new encoding for the events is 

proposed, based on Run Length Encoding (RLE), in order 

filter relevant information only. Using RLE it is possible to 

compact a sequence of equal events (e.g. null events 

considered as less relevant). This paper integrates such a 

RLE C E-DBNs framework in a Cognitive Surveillance 

Node (CSN).  

Using the above explained concepts it is possible to redefine 

the AM structure based on C RLE E-DBNs. A sample CSN 

framework based on the JDL model [13], which is mapped 

into a Cognitive Cycle (CC) [11] is presented in Figure 1. 

The task is to establish a bridge between the concepts 

introduced by Damasio and the effective implementation of 

the system. In particular, it will be shown how the proposed 

C RLE E-DBNs can describe an AM structure capable to 

provide a more efficient knowledge representation, about 

different interactions between entities, at different levels of 

the JDL model.  

In this work, the proposed architecture is applied and 

evaluated in the crowd monitoring domain, where the goal 

of the system is to analyze and classify crowd interactions in 

order to maintain a proper security level in the monitored 

area and to put in action effective countermeasures in case 

of detection of panic or overcrowding situations.  

 

3. PROPOSED COGNITIVE MODEL 

 

In this paper, a new type of Coupled Event based DBNs (C 

E-DBNs) is presented. Such a structure is able to provide an 

efficient knowledge representation for what concerns 

interactions. 

 

Figure 1: Cognitive Surveillance Node framework 

The first step is to introduce a different way to represent 

dynamic state variables within each single E-DBN that 

describe proto and core dynamics. The variables that 

describe the state and time at which occurs are considered as 

disposed according to a reversed hierarchic priority with 

respect to classical DBNs as in [11]. Let us define the state 

label produced by core/proto source tracking and by 

classifying the result as: 

𝑆�̅� = {𝑆1,𝑗 , … , 𝑆𝑁𝑗,𝑗,
} is the set of possible state labels 

observed at each time by the system, indicated as Y, where 

each 𝑆𝑖,𝑗 denotes the 𝑖𝑡ℎ component associated either with 

core source (if 𝑗 = 𝐶) or with proto source (if 𝑗 = 𝑃). Let us 

define a State Sequence as a temporal series of state 

variables 𝛴𝑗 = {(𝜎𝑚
𝑗

, 𝑡𝑚): 𝑚 = 0 … 𝑀 − 1, 𝜎𝑚
𝑗

∈ 𝑆�̅� , 𝑡0 =

𝑇0, 𝑡𝑚 = 𝑇0 + 𝑚∆𝑡}.  

In order to define an event a mobile window 𝑊𝑚(. , . ) is 

defined. Such operator can be applied to a couple of two 

consecutive elements of 𝛴𝑗: 

𝐴𝑚
𝑗

= 𝑊𝑚 ((𝜎𝑚
𝑗

, 𝑡𝑚), (𝜎𝑚−1
𝑗

, 𝑡𝑚−1)), where 𝐴𝑚
𝑗

 

represents the event. It can be fully described as: 𝐴𝑚
𝑗

 =

(𝜎𝑚
𝑗

, 𝜎𝑚−1
𝑗

, 𝑡𝑚) where 𝜎𝑚
𝑗

, 𝜎𝑚−1
𝑗

∈ 𝑆�̅�. Informative content of 

an event can be analyzed as follows: 

 

{
( α𝑚

𝑗
, 𝑡𝑚):   α𝑚

𝑗
= (𝜎𝑚

𝑗
, 𝜎𝑚−1

𝑗
) if 𝜎𝑚

𝑗
≠ 𝜎𝑚−1

𝑗
 

∅𝑗 = (∅, 𝑡𝑚) if 𝜎𝑚
𝑗

= 𝜎𝑚−1
𝑗

  (1) 
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Where ∅ is a null event (i.e., not relevant event), while 

𝜎𝑚
𝑗

 defines a relevant proto/core event. Let us now consider 

two alphabets from which state transitions estimated by Y 

can take values ℰj = {αj,1 , … , αj,Vj}, where αj,i is an event-

symbol describing a specific state transition and Vj is the 

number of events. It is possible to define the event as: Am
j

=

(  αm
j

 , tm):  αm
j

∈ ℰj. In general the i-th αj,m symbol is used 

to represent a specific state label change. 

An event sequence 𝛹𝑗  is defined as follows: 𝛹𝑗 =

{𝐴𝑚
𝑗

, 𝑚 = 1 … 𝑀 − 1}.  

Given a sequence of events 𝛹𝑗 , in order to compact 

consecutive null events and as consequently underline 

relevant events, it is possible to define an run length 

encoding function, as follows: 𝑅(𝛹𝑗  ). This operator can 

generate a RLE sequence 𝛶𝑗= 𝑅(𝛹𝑗  ) as:  

𝛶𝑗 = {𝑥1
𝑗
α𝑚1

𝑗
! 𝑥2

𝑗
 α𝑚2

𝑗
! … … ! 𝑥𝑁

𝑗
 α𝑚𝑁

𝑗
}  (2) 

Where  𝑥𝑘
𝑗
  is the number of occurrences   of α𝑚𝑘

𝑗
 event 

with 𝑘 ∈ {1, … , 𝑁} and 𝑚𝑘  is the k-th time instant. The 

mark “!” is separator between α𝑚𝑘

𝑗
 and α𝑚𝑘+∆𝑘

𝑗
. 𝛶𝑗 is a 

sequence over an ordered time k. ∆𝑘 is a time sampling 

sufficient to represent relevant and null events in 𝛶𝑗 

sequence. 

It is possible to model E-DBNs starting from RLE encoding 

definition for events sequence. Considering an discrete 

index k that represents the relative position of the event in a 

RLE sequence 𝛶𝑗 then one can fix 𝑌𝑗(𝑘) =

[𝑌1
𝑗(𝑘), … , 𝑌𝑉𝑃

𝑗 (𝑘)] where 𝑌𝑥
𝑗(𝑡) are binary random 

variables such that  𝑌𝑥
𝑗(𝑘) = 1 when αj,x ∈ ℰ𝑗  αj,x ≠ ∅, 𝑥 ∈

1, … , 𝑉𝑗  ; and  𝑌𝑥
𝑗(𝑘) = 0 otherwise. Given any couple of 

events in 𝛶𝑗 𝐷𝑌𝑖,𝑠
𝑗 (𝑘) = (𝑌𝑖

𝑗(𝑘 + ∆𝑘), 𝑌𝑠
𝑗(𝑘)), it is possible 

to define a conditional probability 

𝑝(𝑌𝑖
𝑗(𝑘 + ∆𝑘) = 1|𝑌𝑗

𝑗(𝑘) = 1) as the occurrences that a 

not null event 𝑌𝑖
𝑗(𝑘 + ∆𝑘) follows a given not null event 

𝑌𝑗
𝑗(𝑘)  

It is important to note that any couple of events 

𝐷𝑌𝑖,𝑠
𝑗 (𝑘) = (𝑌𝑖

𝑗(𝑘 + ∆𝑘), 𝑌𝑠
𝑗(𝑘)) is defined in according to 

a maximum time 𝑊𝑚𝑎𝑥
𝑗

. Such temporal window permits to 

define a vector of random variables: 

 𝑇𝑖,𝑠
𝑗

= 𝑇
𝐷𝑌𝑖,𝑠

𝑗
(𝑘)

𝑗
= [𝑇1, … , 𝑇

𝑊𝑚𝑎𝑥
𝑗 ]    (3) 

such that if  𝑌𝑖
𝑗(𝑘 + ∆𝑘) = 1 then 𝑇𝑟 = 1 if 𝑟 = ∆𝑘 with 𝑟 ∈

{1, … , 𝑊𝑚𝑎𝑥
𝑗

}. The vector defined before represents a second 

hierarchic level, in which the occurrence time between two 

events of the same entity is stored. In particular, the 

probability of 𝑇𝑖,𝑠
𝑗

 comes out to be dependent on which 

coupe of successive events occurred at time k and 𝑘 + ∆𝑘, 

i.e. one can estimate easily from 𝛶𝑗 sequences conditioned 

probabilities of the type 

𝑝(𝑇𝑖,𝑠
𝑗

= 1|𝑌𝑖
𝑗(𝑘 + ∆𝑘) = 1, 𝑌𝑠

𝑗(𝑘) = 1)  (4) 

In Figure 2 is shown a hierarchic RLE E-DBN structure. 

 
 

Figure 2: Example of a RLE E-DBN for generic couple of events 

𝑫𝒀𝒊,𝒔
𝒋 (𝒌)where it is possible to note the second hierarchic level in which is 

stored the occurrence time between events.  

Let us suppose one has to deal with two RLE sequences, 𝛶𝑃 

and 𝛶𝐶 . Under the hypothesis that 𝛶𝑃 and 𝛶𝐶  are produced by 

a time aligned couple of proto and core intelligent sensors, 

sharing the same starting time 𝑡0 and processing data at the 

same time sampling ∆𝑡, it is possible to define their RLE 

intersection (I-RLE) sequence 𝛶𝑃𝐶  as:  

𝛶𝑃𝐶 = {… … ! 𝑥𝜉−1
𝐶 α𝑚𝜉−1

𝐶 ! 𝑥𝜉
𝑃 α𝑚𝜉

𝑃 ! 𝑥𝜉+1
𝐶  α𝑚𝜉+1

𝐶 ! … … }, (5) 

where only one proto event occurs between two core events. 

It is possible to represent the interactions, between proto and 

core events, in a I-RLE sequences using Coupled RLE E-

DBN. Given any couple of events 𝐷𝑌𝑖,𝑠′
𝑗𝑗′(𝑘) = (𝑌𝑖

𝑗(𝑘 +

∆𝑘), 𝑌𝑠′
𝑗′(𝑘)), in which 𝑗 ≠ 𝑗′ and 𝑖 ∈ 1, … , 𝑉𝑗 while 𝑠′ ∈

1, … , 𝑉𝑗′ a third hierarchic level can be defined as the 

vector (of random variables): 

𝑇𝑖,𝑠′
𝑗𝑗′

= 𝑇
𝐷𝑌𝑖,𝑠′

𝑗𝑗′
(𝑘)

𝑗𝑗′
= [𝑇′1, … , 𝑇′

𝑊𝑚𝑎𝑥
𝑗𝑗′ ]   (6) 

given that if  𝑌𝑖
𝑗(𝑘 + +∆𝑘) = 1  then 𝑇𝑟

′ = 1  if 𝑟 = ∆𝑘 with 

 𝑟 ∈ {1, … , 𝑊𝑚𝑎𝑥
𝑗𝑗′

}. In particular, the probability of 𝑇𝑖,𝑠′
𝑗𝑗′

 

comes out to be dependent on which pair of successive 

events occurred at time k and 𝑘 + ∆𝑘, i.e. from 𝛶𝑗𝑗′ 

sequences it possible to write the conditioned probabilities 

as follows: 

𝑝(𝑇𝑖,𝑠′
𝑗𝑗′

= 1|𝑌𝑖
𝑗(𝑘 + ∆𝑘) = 1, 𝑌𝑠′

𝑗′(𝑘) = 1)  (7) 

Let us now consider a triplet of events as 𝑇𝑌
𝑖,𝑠′,𝑠

𝑗𝑗′𝑗 (𝑘) =

(𝑌𝑖
𝑗(𝑘 + ∆𝑘), 𝑌𝑠′

𝑗′(𝑘), 𝑌𝑠
𝑗(𝑘 − ∆𝑘) ), it is possible to define 

associated conditional probabilities as follows: 

𝑝 (
𝑇𝑖,𝑠

𝑗
=1,𝑇𝑖,𝑠′

𝑗𝑗′
=1

𝑌
𝑖
𝑗

(𝑘+∆𝑘)=1,𝑌𝑠′
𝑗′

(𝑘)=1,𝑌𝑠
𝑗

(𝑘−∆𝑘)=1
) =

𝑝(𝑇𝑖,𝑠′
𝑗𝑗′

= 1|𝑌𝑖
𝑗(𝑘 + ∆𝑘) = 1, 𝑌𝑠′

𝑗′(𝑘) = 1) ∙

𝑝(𝑇𝑖,𝑠′
𝑗′𝑗

= 1|𝑌𝑠′
𝑗′(𝑘) = 1, 𝑌𝑠

𝑗(𝑘 − ∆𝑘) = 1)  (8) 

It is possible to assume the following definitions: passive 

interactions referred to 𝑇𝑌𝑖,𝑠′,𝑠
𝑃𝐶𝑃(𝑘) triplets (proto-core-proto), 

active interactions when 𝑇𝑌𝑖,𝑠′,𝑠
𝐶𝑃𝐶 (𝑘) (core-proto-core). In 

Figure 3 is shown a hierarchic C RLE E-DBN structure. 
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This dynamic model describes the relationships within the 

Autobiographical Memory in terms of cause effect 

relationships storing the frequencies of occurrences of event 

triplets  𝑝 (
𝑋𝑦

𝑗
(𝑡+∆𝑡)

𝑋𝑥′
𝑗′

(𝑡),𝑋2
𝑗

(𝑡−∆𝑡)
), that can be describe by Coupled 

DBNs, the occurrence times, between the triplets, are stored 

into temporal histograms. Now the conditional probabilities 

are defined by Coupled RLE E-DBNs as follows: 

𝑝 (
𝑌𝑖

𝑗
(𝑘+∆𝑘)

𝑌𝑠′
𝑗′

(𝑘),𝑌𝑠
𝑗

(𝑘−∆𝑘)
) ≡ 𝑝 (

𝑇𝑖,𝑠
𝑗

=1,𝑇𝑖,𝑠′
𝑗𝑗′

=1

𝑌
𝑖
𝑗

(𝑘+∆𝑘)=1,𝑌𝑠′
𝑗′

(𝑘)=1,𝑌𝑠
𝑗

(𝑘−∆𝑘)=1
) (9) 

and the occurrence times are embedded into more compact 

structure as upper hierarchic levels.  

 
Figure 3: Example of a C RLE E-DBN for generic triplet of events 

𝑻𝒀
𝒊,𝒔′,𝒔

𝒋𝒋′𝒋 (𝒌)where it is possible to note three hierarchic levels in which are 

stored the occurrence time between events 

The equation (9) permits to perform the prediction task 

when an external event 𝑌𝑠′
𝑗′(𝑘) is detected by the system, the 

AM is analyzed to establish which was the previously 

occurred internal event 𝑌𝑠
𝑗(𝑘 − ∆𝑘). The Autobiographical 

Memory is then examined to establish which is the internal 

event �̂�𝑖
𝑗(𝑘 + ∆𝑘) that is more likely to occur: 

�̂�𝑖
𝑗(𝑘 + ∆𝑘) = 𝑚𝑎𝑥

�̂�𝑖
𝑗 {𝑝 (

𝑋𝑦
𝑗

(𝑡+∆𝑡)

𝑋𝑥′
𝑗′

(𝑡),𝑋2
𝑗

(𝑡−∆𝑡)
)}  (10) 

 

4. CROWD MONITORING  

 

A crowd monitoring scenario is here considered, where a 

human operator controls an environment through actions 

aiming at restoring normality after abnormal crowding event 

detection. In this section the proposed learning and 

predictive models are compared. Operator reactions are 

monitored by CSN endo-sensors as changes in the system 

status that are associated with operator actions when the 

operator assumes control of action flow. On the other hand, 

CSN eso-sensors are associated with crowding changes. 

This approach, according to the proposed bio-inspired 

learning model, permits a knowledge transfer from human 

operator to the CSN. The human-environment interactions 

are stored into the AM and the operator actions are strictly 

linked to the human interpretations of the scene under 

control (e.g. dangeros crowding or safety situation). The 

state labels produced by operator (proto source) are the 

actions, which correspond to the interpretations of the 

crowding situations (core source).  

A simulation environment has been developed, in order to 

produce different crowding scenarios. When an operator 

observes some anomalous crowding situations can produce 

alarm messages (AlMes), which are viewed on some control 

panels, to redirect the people flow. Circumstances when 

doors opens to force quit (FQ) the people, is considered as 

dangerous situations. Instead, in normal crowding situations 

an operator can produce non-relevant actions (NULL) or can 

restore the normal (RtoN) conditions of the environment. 

Self-Organizing Map (SOM), can be employed in order to 

reduce the dimensionality of the crowding states. E.g., 

SOMs can be used in all the case in which multi-camera 

sensors are monitoring different critical zones. As an 

example, it is considered the sequence of crowding events 

( α𝑚
𝐶 , 𝑡𝑚) (core events), shown in Figure 4; for each of them 

the operator associates specific actions ( α𝑚
𝑃 , 𝑡𝑚) (proto 

events). 
(𝝈𝒎−𝟏

𝑪 , 𝒕𝒎−𝟏) (𝝈𝒎
𝑪 , 𝒕𝒎) ( 𝛂𝒎

𝑪 , 𝒕𝒎) ( 𝛂𝒎
𝑷 , 𝒕𝒎) 

(4,0) (4,3) (4 → 4,3) (𝑁𝑈𝐿𝐿, 3,1) 
(4,3) (4,6) (4 → 4,6) (𝑁𝑈𝐿𝐿, 6.1) 
(4,6) (55,9) (4 → 55,9) (𝑁𝑈𝐿𝐿, 9.1) 

(55,9) (55,12) (55 → 55,12) (𝑁𝑈𝐿𝐿, 12.1) 
(55,12) (57,15) (55 → 57,15) (𝑁𝑈𝐿𝐿, 15.1) 
(57,15) (57,18) (57 → 57,18) (𝑁𝑈𝐿𝐿, 18.1) 

… 

(57,36) (57,39) (57 → 57,39) (𝑁𝑈𝐿𝐿, 39.1) 
(30,42) (29,45) (30 → 29,45) (𝑁𝑈𝐿𝐿 → AlMess, 47.5) 
(29,45) (29,48) (29 → 29,48) (AlMes → AlMes, 48.1) 
(29,48) (25,51) (29 → 25,3) (AlMes → FQ, 52) 

… 
(25,60) (4,64) (25 → 4,64) (𝐹𝑄 → RtoN, 66) 

Figure 4 Crowding state labels evolutions, definition of core/proto events.  

 

The core/proto events presented in Table 1 correspond to 

following core/proto events RLE encoding sequences: 

𝛶𝐶 = {2 ∅! 4 → 55! ∅!  55 → 57! 8 ∅!  57 → 30!  
30 → 29!  ∅!  29 → 25! 3∅!  25 → 4} 

𝛶𝑃 = {14 ∅!  𝑁𝑈𝐿𝐿 → 𝐴𝑙𝑀𝑒𝑠! ∅!  𝐴𝑙𝑀𝑒𝑠 → 𝐹𝑄! 3 ∅ ! 
𝐹𝑄 → 𝑅𝑡𝑜𝑁} 

It is possible to represent the interactions, between proto 

and core events, in I-RLE sequences using Coupled RLE E-

DBNs.  

𝛶𝐶𝑃 = {2 ∅!  4 → 55! ∅!  55 → 57! 8 ∅! 57 → 30!  
30 → 29!  𝑁𝑈𝐿𝐿 → 𝐴𝑙𝑀𝑒𝑠! 29 → 25!  

𝐴𝑙𝑀𝑒𝑠𝑠 → 𝐹𝑄! 2 ∅! 25 → 4! 𝐹𝑄 → 𝑅𝑡𝑜𝑁  
From 𝛶𝐶𝑃 a passive and active AMs can be estimated on 

the basis of relative frequencies of occcurences of three 

alternated proto/core events. It is possible to demonstrate 

that the CSN, using proposed learning approach, is able to 

detect abnormal crowding events determining appropriate 

reactions, in according with normal crowding maintaining 

tasks. 
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5. RESULTS AND CONCLUSION 

 

This section describes the experiments on several 

synthetic crowding sequences provided by the crowd 

simulator [14] [15]. The simulated environment consists of 

six rooms, monitored by cameras (virtual sensors). These try 

to reproduce (processed) sensor data coming from different 

cameras looking at different subsets (rooms) of the 

monitored scene. A virtual people estimation algorithm 

outputs the number of people by simply adding some noise 

to the mere number of people framed by the virtual camera. 

The impact of the RLE based C E-DBNs in terms of 

maintaining a proper security level within the monitored 

area has been instigated. For this reason we try to evaluate 

the performances of the system, by defining a crowding 

index 𝐼𝑖
𝐶  for each room i of the monitored environment: 

𝐼𝑖
𝐶 =

𝑁𝑖

𝑁𝑖
𝑚𝑎𝑥     (11) 

Where 𝑁𝑖is the number of individual measured in room i 

and 𝑁𝑖
𝑚𝑎𝑥 is the maximum number of people allowed in that 

room (𝑁𝑖
𝑚𝑎𝑥 is proportional to room areas). System 

performance has been studied for different values of the 

temporal window 𝑊𝑚𝑎𝑥
𝑗𝑗′

. Figure 5 presents a crowding index 

trend using a (heuristically tuned) causality window 𝑊𝑚𝑎𝑥
𝑗𝑗′

 = 

10[s]: it is possible to note that after a transition period, the 

crowding indexes tend to stabilize, meaning that a regular 

stream of people flows through the environment. In this case 

the CN is able to find and to put in action the best strategy 

(i.e. doors configuration) in order to regulate the people flow 

to avoid overcrowding situations. 

 

 

Figure 5 Crowding index with 𝑾𝒎𝒂𝒙
𝒋𝒋′

 = 10[s]  

The described work has the purpose to show how coupled 

a specific type of RLE E-DBNs are a promising tool to 

represent efficiently several surveillance and security 

maintenance applications. In particular, the experimental 

tests show promising results of proposed AM structure 

capability of the learning the interactions and of predicting 

their evolution in a crowd control application within a 

critical infrastructures The presented work shows how the 

proposed learning model is able to provide a more enriched 

description of the events for a more accurate interactions 

analysis while addressing the task of designing next 

generation surveillance systems. 
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