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ABSTRACT

Multicomponent signals, i.e. superpositions of modulated
waves, arise in many physical or biological systems. Ex-
ploiting the particular structure of these signals, denoising
methods based on time-frequency distributions often outper-
form standard techniques such as those based on diagonal
estimation or sparsity approaches. Recently, a simple de-
noising technique based on local integration in scale of the
wavelet transform was proposed. In spite of its behaviour be-
ing better compared to classical techniques for medium noise
levels, it does not perform so well in other cases. We propose
here a method to improve denoising behaviour based on a
more accurate mode reconstruction technique. The method
is detailed for time-frequency representation given by short-
time Fourier and continuous wavelet transforms, with the
emphasis placed on their differences.

Index Terms— Time-frequency, ridge, synchrosqueez-
ing, denoising, multicomponent signals

1. INTRODUCTION

Many signals from the physical world can be modeled as
a sum of amplitude- and frequency-modulated (AM–FM)
waves, called multicomponent signals, which have been the
focus of much interest in the past few decades. As a result
of their simplicity and efficiency, linear time-frequency (TF)
transforms such as short-time Fourier transform (STFT) and
continuous wavelet transform (CWT) have received particu-
lar attention. The STFT and CWT of multicomponent signals
draw so-called ridges in the TF plane which, once detected,
allow for the reconstruction of the different components by
considering the transform on the ridges [1]. More recently, it
was shown in [2, 3] that local frequency integration improved
the robustness to noise of the reconstruction.

Yet, these methods do not perform very well when the
frequency modulation is strong, i.e. when the modes locally
behave like linear chirps. We propose here to adapt the size
of the integration domain to frequency modulation and noise
level.

Section 2 introduces the notation, and recalls the usual
first-order approximation of the CWT and STFT of multicom-
ponent signals. Then, section 3 extends these approximations
to strong frequency modulations, while section 4 shows how
to reconstruct the components in a noisy context. Finally nu-
merical results are given in section 5, demonstrating the effi-
ciency of the method on the one hand, and putting the empha-
sis on the differences between STFT and CWT on the other.

2. DEFINITIONS

2.1. Short-Time Fourier Transform

In the following, we denote by L1(R) and L2(R) the space
of real integrable and square-integrable functions. Given a
signal s ∈ L1(R), its Fourier transform is defined by:

ŝ(η) :=

∫
R
s(t) e−2iπηt dt. (1)

Taking a window g ∈ S(R), the (modified) Short-Time
Fourier Transform (STFT) of a signal s is defined by

Vs(η, t) :=

∫
R
s(τ)g(τ − t)e−2iπη(τ−t) dτ. (2)

The STFT admits the following synthesis formula:

s(t) =
1

g(0)

∫
R
Vs(η, t) dη, (3)

provided that η 7→ Vs(η, t) is integrable, which will always
be the case in this paper.

2.2. Continuous Wavelet Transform

Taking an admissible wavelet ψ ∈ L2(R) (i.e. CΨ :=∫∞
0
|ψ̂(ξ)|2
ξ dξ < ∞) and letting ψa,t(τ) := 1

aψ
(
τ−t
a

)
, we

define the CWT of the signal s by:

Ws(a, t) = 〈s, ψa,t〉

=
1

a

∫
R
s(τ)ψ

(
τ − t
a

)
dτ, (4)
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where z̄ denotes the complex conjugate of z. We suppose that
ψ is analytic, i.e. Supp(ψ̂) ⊂ [0,∞[, so that the WT Ws

of a real signal s is the half of the WT of its analytic signal
san = s + iH(s), where H stands for the Hilbert transform
(see [4] for details). We recall the Morlet formula (obtained
by taking a Dirac for synthesis, see [4] for instance):

san(t) =
1

C ′ψ

∫ ∞
0

Ws(a, t)
da

a
, (5)

where C ′ψ =
∫∞

0
ψ̂(ξ)dξξ . The real signal is easily obtained

by s = 1
2Re(san).

2.3. Multicomponent signals and ridges

A general modulated wave writes h(t) = a(t)e2iπφ(t), with
a(t) > 0 and φ′(t) > 0. When a and φ′ are slow-varying
functions, both the CWT and STFT of such signals have been
studied for decades, and can be well approximated in the
vicinity of time t by considering the pure wave

h̃1(t+ τ) = a(t)e2iπ[φ(t)+φ′(t)τ ]. (6)

We then get

Vh(η, t) ≈ h(t) ĝ(η − φ′(t))
Wh(a, t) ≈ h(t) ψ̂(aφ′(t)),

(7)

The frequency center of ψ being assumed to be one with-
out any loss of generality. Dealing with multicomponent sig-
nals, i.e. superpositions of modes, is no more complicated as
soon as the different components are separated in frequency,
which means their TF distribution do not overlap. Let s(t) =∑K
k=1 ak(t)e2iπφk(t) be a multicomponent signal, we recall

the separation condition for both STFT and CWT:

Proposition 2.1. The signal s is separated for STFT if

|φ′k(t)− φ′l(t)| > Supp ĝ, k 6= l, (8)

and for CWT if

|φ′k(t)− φ′l(t)|
|φ′k(t) + φ′l(t)|

>
1

2
Supp ψ̂, k 6= l, (9)

where Supp ĝ (resp. ψ̂) denotes the size of the frequency
bandwidth of g (resp. ψ). The difference arises here because
of the logarithmic frequency description used by CWT. Also,
studying separated multicomponent signals amounts to study-
ing single components, which we will do in the sequel.

2.4. Gaussian window and wavelet

Due to its optimal TF resolution, the Gaussian function is of-
ten used as window g. Let us define the Gaussian window

and its corresponding complex Gaussian (also called Morlet)
wavelet:

g(t) = σ−1/2e−π
t2

σ2 , (10)

ψ(t) = σ−1/2e−π
t2

σ2 e2iπt. (11)

The parameter σ enables the choice of the size of the win-
dow/wavelet in accordance with (8) and (9). The next section
shows how to use these particular functions to extend approx-
imations (7) to the case of strong frequency modulations.

3. RECONSTRUCTING STRONG
FREQUENCY-MODULATED SIGNALS

Let us now assume that φ′′(t) is no longer negligible, then
first order approximations (7) no longer hold, and more in-
volved techniques are needed. For that purpose, an asymp-
totic method in time domain, the stationary phase approxima-
tion, has been used successfully in [1]; a different technique
introduced in [5] is to expand the phase up to the second order.
The next section derives the corresponding approximation of
the STFT and CWT magnitude, on which our denoising tech-
nique is based.

3.1. Exact formulae for a Gaussian window/wavelet

We now aim to extend formulae (7) when the frequency mod-
ulation is not negligible. The simplest way to proceed is to
approximate the mode h in the vicinity of t by its second-
order Taylor expansion:

h̃2(t+ τ) = a(t)e2iπ[φ(t)+φ′(t)τ+ 1
2φ
′′(t)τ2]. (12)

To study the STFT of such chirps, we need to compute the
Fourier transform of a Gaussian modulated linear chirp.

Proposition 3.1. Consider the function u(t) = e−πzt
2

, where
z = reiθ with cos θ > 0, so that the function is integrable.
Then its Fourier transform is

û(ξ) = r−
1
2 e−i

θ
2 e−

π

reiθ
ξ2 . (13)

Proof. One can proceed as in the case when z is real: it suf-
fices to differentiate u and consider the Fourier transform of
the obtained differential equation (see Appendix A of [6] for
instance).

Theorem 3.1. For a Gaussian window or its associated Mor-
let wavelet, the magnitude of the STFT and CWT transform of
h̃2 admits the following closed-form expressions:

|Vh̃2
(η, t)| = |h(t)|σ 1

2 (1 + σ4φ′′(t)2)−
1
4 e
−πσ

2(η−φ′(t))2

1+σ4φ′′(t)2

|Wh̃2
(a, t)| = |h(t)|σ 1

2 (1 + σ4a4φ′′(t)2)−
1
4 e
−πσ

2(1−aφ′(t))2

1+σ4a4φ′′(t)2 .
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Proof. For a fixed time t, equation (12) and Proposition 3.1
give

Vh̃2
(η, t) = h(t)σ−

1
2 r−

1
2 e−i

θ
2 e−

π
r e
−iθ(η−φ′(t))2 ,(14)

with r = ( 1
σ4 +φ′′(t)2)

1
2 and θ = arctan(−φ′′(t)σ2). Using

the identity cos arctanx = 1√
1+x2

, one finally obtains Vh̃2
,

and Wh̃2
in the same manner.

This shows that the magnitude of the STFT of a linear
chirp is also a Gaussian function centered in η = φ′(t). The
difference with equations (7) lies in the magnitude and the
width of this Gaussian. The formula for the CWT is very
similar, except that σ is replaced by aσ.

3.2. Stationary phase approximation

We have explicit formulae for the STFT and the CWT of a
linear chirp, when both g and ψ are Gaussian. However, in a
more general context such formulae are no longer available,
but the transforms can still be well approximated by the sta-
tionary phase approximation [7]. Let us suppose that φ′(t) is
strictly monotonic, then for any (η, t) there exists at most one
time tc such that φ′k(tc) = η. If tc exists, then the stationary
phase approximation gives

|Vh(η, t)| ≈ |h(tc)|
g(tc − t)√
|φ′′(tc)|

. (15)

We can conduct the same reasoning with the CWT, where η
is replaced by 1/a, which gives

|Wh(a, t)| ≈ |h(tc)|
∣∣ψ ( tc−ta )∣∣
a
√
|φ′′(tc)|

. (16)

The method presented here can be adapted to any general win-
dow, using these formulae.

4. DENOISING MULTICOMPONENT SIGNALS

The previous section gave details about how the information
is localised around the ridges. We aim here at using this in-
formation for denoising ; so we consider a multicomponent
signal corrupted by a white Gaussian noise. To denoise the
signal we propose the following method, also used in [3]:

• Estimate the ridge at time t, φ′(t).

• Compute the integration domains I(t), so that for η ∈
I(t), |Vh(η, t)| is higher than the noise level.

• Integrate the STFT or CWT of the noisy signal on the
domain, to get an estimate of h(t).

• Iterate the process for all times t and all components.

This process is illustrated in Figure 1, where the STFT and
CWT of an AM–FM mode are displayed along with a slice
of both transforms for a fixed time, showing the integration
domain. The following sections will explain how to choose
the frequency integration domains I(t), considering either the
first- or second-order approximation.
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Fig. 1. Illustration of STFT- or CWT-based denoising. (a)
STFT of a noisy AM–FM wave. (b) a slice of the STFT at
time t = 1

2 , along with the mean noise level and the integrated
part. (c) and (d): idem for CWT, scales being displayed on a
logarithmic scale.

4.1. Noise distribution in the transformed domain

Let us start by quantifying the noise distribution on STFT and
CWT. We consider a noisy realisation s(t) = h(t) + n(t),
where n is a Gaussian process with 0 mean and variance σ2

n.
For a fixed frequency η or scale a, a simple calculation leads
to

Var(|Vn(η, t)|) = σ2
n

Var(|Wn(a, t)|) = 1
aσ

2
n.

(17)

4.2. Integration domain, first order

According to equation (7), η 7→ |Vh(η, t)| almost reaches a
maximum at φ′(t), and is symmetric with respect to φ′(t).
Thus, we aim at computing ∆1,V such that |Vh(φ′(t) ±
∆1,V , t)| = σn. Using equation (17) and remarking that√
σ|h(t)| = |Vh(φ′(t), t)| = Vmax(t), we get

∆1,V =
1

σ
√
π

√
− log

σn

Vmax(t)
. (18)

To compute the analogue for the CWT leads to integrate on
[
1−∆1,W

φ′(t) ,
1−∆1,W

φ′(t) ], with

∆1,W =
1

σ
√
π

√
− log

(
σn

Wmax(t)
√
a

)
, (19)

where a =
1±∆1,W

φ′(t) is the corresponding scale. An easy way
to remove a from the right-hand side is to approximate a by
φ′(t).

3
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4.3. Second order model

A similar computation for the second-order model gives

∆2,V =

√
1+σ4φ′′(t)2

σ
√
π

√
− log σn

Vmax(t) ,

∆2,W =

√
1+a4σ4φ′′(t)2

σ
√
π

√
− log

(
σn

Wmax(t)
√
a

)
,

(20)

where we can still use the approximation a ≈ φ′(t).

5. NUMERICAL RESULTS

This section shows the efficiency of the denoising method
on synthetic signals. Methods will be denoted by STFT1,
STFT2, CWT1 or CWT2, depending on the transform and
the approximation order. We will compare them with a
general TF denoising technique: Block-Thresholding [8],
denoted by BT hereafter. Ridges are estimated using a sim-
ple heuristic search like in [5], whereas φ′′k(t) is estimated
by ridge differentiation after a regularizing spline-fitting
step. The code implementing the method can be down-
loaded from http://www-ljk.imag.fr/membres/
Thomas.Oberlin/Eusipco13.tar.gz, together with
Matlab scripts that plot all the figures of this paper.

5.1. A first example

Let us first assess the efficiency of first-order methods. Figure
2 (a) and (b) show the STFT and CWT of a low-modulated 3-
component signal. Denoising results for this signal are de-
picted on Figure 2 (c); they show that STFT1 and CWT1
clearly outperform BT for any input SNR. Note however that
the method does not work for very high noise levels (SNR <
−5dB), since the ridges are no longer correctly estimated.
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Fig. 2. Denoising performances on a synthetic 3-components
signal. (a) STFT with window σ = 0.05. (b) CWT with
σ = 7. (c) comparison between 3 methods.

5.2. STFT vs CWT, and window’s size

Let us here stress the differences between STFT and CWT.
First, note that the denoising performance depends on the
ability of the transform to sparsely represent the signal. If the
signal is made of monochromatic waves, taking a large win-
dow will ensure a quasi-perfect TF representation (i.e., made
of three thin lines). But if the components are frequency mod-
ulated, a very large window will cause strong time diffusion,
which hampers the quality of the representation. Thus, one
has to choose σ so as to achieve a trade-off between time and
frequency localization.

The main difference between STFT and CWT lies in how
they handle frequency modulation: STFT performs well pro-
vided φ′′ is low, whereas CWT needs φ′′/φ′ to be low (see
the discussion in [4] section 4.5 for more details). The other
difference concerns mode separation condition (equations (8)
and (9)), which must be linear for STFT and logarithmic for
CWT. This is illustrated here through the study of two dif-
ferent 3-component signals: one is composed of polynomial
chirps and is well adapted to STFT, whereas the other contains
exponential chirps that can be well processed by CWT. The
STFT and CWT of both signals are displayed in Figure 3, to-
gether with their respective denoising performances using the
second-order approximation. Figure 3 (c) shows that meth-
ods based on STFT representation are well adapted to poly-
nomial chirps, whereas a poor separation in the time-scale
plane hampers CWT2. However, according to Figures 3 (d)
and (f), STFT-based methods do not manage to denoise the
signal properly because of heavy time diffusion effects. Note
parameters σ are chosen carefully for each method to get the
best possible results, i. e. they must ensure that (8) and (9)
are satisfied. .

5.3. Contribution of the second-order model

This section illustrates how to take into account second-order
terms enables better signal denoising in case of strong fre-
quency modulation. For this purpose, the two signals of Fig-
ure 3 are denoised using either the first or second order meth-
ods, and the results are displayed in Figure 4. This shows
that the second-order approximation offers little improvement
when the noise level is high, but is of great interest for low
noise.

6. CONCLUSION

This paper analysed the magnitude of the STFT and CWT
of strongly modulated multicomponent signals for signal de-
noising. A component reconstruction method by local inte-
gration was proposed which took into account local frequency
modulation and noise level. Numerical experiments demon-
strated the effectiveness of the approach for the denoising
of multicomponent signals with polynomial or exponential
phase, respectively from their STFT or CWT.
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Fig. 3. Analysis of signals with strong frequency modulations. (a): STFT of a superposition of polynomial chirps; (b): CWT
of the same signal; (c): corresponding denoising results for STFT2 and CWT2. (d), (e) and (f): STFT, CWT and corresponding
denoising performance for a superposition of exponential chirps. The parameters are σ = 0.08 for STFT and σ = 5 for CWT.
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Fig. 4. Importance of second-order terms for strong fre-
quency modulation. (a): denoising performance for STFT1
and STFT2 applied to the signal of Figure 3 (a) and (b), with
σ = 0.08. (b): denoising performance for CWT1 and CWT2
applied to the signal of Figure 3 (d) and (e), with σ = 5.

Future works should include a broader comparison with
other denoising methods, based for instance on the Wigner-
Ville transform [9], wavelet packet dictionaries [10] or the
Empirical Mode Decomposition [11].
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